ПРИМЕНЕНИЕ УЛЬТРАЗВУКА ДЛЯ МОДИФИКАЦИИ ПОВЕРХНОСТНОГО СЛОЯ ДЕТАЛЕЙ, ПОЛУЧЕННЫХ АДДИТИВНЫМИ ТЕХНОЛОГИЯМИ
- Авторы: Приходько В.М.1, Нигметзянов Р.И.1, Сундуков С.К.1, Фатюхин Д.С.1
-
Учреждения:
- Московский автомобильно-дорожный государственный технический университет (МАДИ)
- Выпуск: № 7 (169) (2025)
- Страницы: 3-12
- Раздел: Технологии электро-физико-химической и комбинированной обработки
- URL: https://bakhtiniada.ru/2223-4608/article/view/303633
- DOI: https://doi.org/10.30987/2223-4608-2025-7-3-12
- ID: 303633
Цитировать
Полный текст
Аннотация
Ключевые слова
Об авторах
Вячеслав Михайлович Приходько
Московский автомобильно-дорожный государственный технический университет (МАДИ)
Email: prikhodko@madi.ru
член-корреспондент Российская академия наук (РАН), профессор, доктор технических наук
Равиль Исламович Нигметзянов
Московский автомобильно-дорожный государственный технический университет (МАДИ)
Email: lefmo@yandex.ru
«Технология конструкционных материалов», кандидат технических наук
Сергей Константинович Сундуков
Московский автомобильно-дорожный государственный технический университет (МАДИ)
Email: sergey-lefmo@yandex.ru
«Технология конструкционных материалов», кандидат технических наук
Дмитрий Сергеевич Фатюхин
Московский автомобильно-дорожный государственный технический университет (МАДИ)
Email: mitriy2@yandex.ru
кафедра «Технологии конструкционных материалов», профессор, доктор технических наук
Список литературы
- Чуканов А.Н. Определение коэффициента анизотропии и скорости локальной деформации в аддитивных сплавах / А.Н. Чуканов, В.А. Коротков, А.А. Яковенко // Известия ТулГУ. Технические науки. 2024. № 3. URL: https://cyberleninka.ru/article/n/opredelenie-koeffitsienta-anizotropii-i-skorosti-lokalnoy-deformatsii-v-additivnyh-splavah (дата обращения: 08.04.2025).
- Сундуков С.К. Ультразвуковые технологии в процессах получения неразъёмных соединений. М.: Общество с ограниченной ответственностью «Техполиграфцентр», 2023. 269 с. ISBN 978-5-94385-209-1.
- Bai Y. Evolution mechanism of surface morphology and internal hole defect of 18Ni300 maraging steel fabricated by selective laser melting // Journal of Materials Processing Technology. 2022. Vol. 299. P. 118. doi: 10.1016/j.jmatprotec.2021.117328
- Li C. Surface characteristics enhancement and morphology evolution of selective-laser-melting (SLM) fabricated stainless steel 316L by laser polishing // Optics & Laser Technlogy. 2023. Vol. 162. P. 10. doi: 10.1016/j.optlastec.2023.109246
- Shi X. Effect of high layer thickness on surface quality and defect behavior of Ti-6Al-4V fabricated by selective laser melting // Optics & Laser Technology. 2020. Vol. 132. P. 106. doi: 10.1016/j.optlastec.2020.106471
- Giorleo L. Ti surface laser polishing: effect of laser path and assist gas // Procedia CIRP. 2015. Vol. 33. P. 446−451. doi: 10.1016/j.procir.2015.06.102
- Kumar A.Y. The effects of Hot Isostatic Pressing on parts fabricated by binder jetting additive manufacturing // Additive Manufacturing. 2018. Vol. 24. P. 115−124. doi: 10.1016/j.addma.2018.09.021
- Popov V.V Effect of hot isostatic pressure treatment on the electron-beam melted Ti-6Al-4V specimens // Procedia Manufacturing. 2018. Vol. 21. P. 125−132. doi: 10.1016/j.promfg.2018.02.102
- Lyczkowska-Widlak E. Chemical polishing of scaffolds made of Ti-6Al-7Nb alloy by additive manufacturing // Archives of Civil and Mechanical Engineering. 2014. Vol. 14 (4). P.586−594. doi: 10.1016/j.acme.2014.03.001
- Jain S. Electrochemical polishing of selective laser melted Inconel 718 // Procedia Manufacturing. 2019. Vol. 34. P. 239−246. doi: 10.1016/j.promfg.2019.06.145
- Slegers S. Surface roughness reduction of additive manufactured products by applying a functional coating using ultrasonic spray coating // Coatings. 2017. Vol. 7. P. 208. doi: 10.3390/coatings7120208
- Hosseinzadeh A. Severe plastic deformation as a processing tool for strengthening of additive manufactured alloys // Journal of Manufacturing Processes. 2021. Vol. 68 (2). P. 788−795. doi: 10.1016/j.jmapro.2021.05.070
- Nigmetzyanov R.I. Additive Manufacturing with Ultrasound // Russian Engineering Research. 2017. Vol. 37 (12). P. 1070−1073. doi: 10.3103/S1068798X17120140.
- Sundukov S.K. Ultrasonic Vibration Mechanism in Making Permanent Joints // Steel in Translation. 2024. Vol. 54 (1). P. 10−15. doi: 10.3103/S0967091224700190.
- Grigoriev S.N. et al. Effect of cavitation erosion wear, vibration tumbling, and heat treatment on additively manufactured surface quality and properties // Metals. 2020. Vol. 10 (11). P. 1540. doi: 10.3390/met10111540.
- Jeon J.H. et al. Effect of electropolishing on ultrasonic cavitation in hybrid post-processing of additively manufactured metal surfaces // Journal of Manufacturing Processes. 2024. Vol. 120. P. 703−711. doi: 10.1016/j.jmapro.2024.04.092
- Wang Q. et al. Rotary ultrasonic-assisted abrasive flow finishing and its fundamental performance in Al6061 machining // The International Journal of Advanced Manufacturing Technology. 2021. Vol. 113. P. 473−481. doi: 10.1007/s00170-021-06666-7
- Приходько В.М. Современные направления ультразвуковой жидкостной обработки в машиностроении / В. М. Приходько, Р. И. Нигметзянов, С. К. Сундуков, Д. С. Фатюхин // Наукоемкие технологии в машиностроении. 2021. № 8 (122). С. 12−17. doi: 10.30987/2223-4608-2021-8-12-17. EDN YFXYYC.
- Teramachi A. Improving the surface integrity of additive-manufactured metal parts by ultrasonic vibration-assisted burnishing // Journal of Micro-and Nano-Manufacturing. 2019. Vol. 7 (2). P. 24. doi: 10.1115/1.4043344
- Нигметзянов Р.И. Способы ультразвукового поверхностного пластического деформирования / Р. И. Нигметзянов, В. М. Приходько, С. К. Сундуков [и др.] // Наукоемкие технологии в машиностроении. 2022. № 7 (133). С. 33−39. doi: 10.30987/2223-4608-2022-1-7-33-39. EDN EGTURS.
- Nigmetzyanov R.I. et al. Additive Manufacturing with Ultrasound // Russian Engineering Research. 2017. Vol. 37 (12). P. 1070−1073. doi: 10.3103/S1068798X17120140.
Дополнительные файлы
