Development of a real-time RT-PCR assay for detection of Hendra and Nipah viruses
- 作者: Shirobokova S.A.1, Shabalina A.V.1, Sukhikh I.S.1, Chayeb V.A.1, Dolgova A.S.1, Dedkov V.G.1,2
-
隶属关系:
- St. Petersburg Pasteur Institute
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases
- 期: 卷 15, 编号 3 (2025)
- 页面: 559-567
- 栏目: ORIGINAL ARTICLES
- URL: https://bakhtiniada.ru/2220-7619/article/view/315138
- DOI: https://doi.org/10.15789/2220-7619-DOA-17840
- ID: 315138
如何引用文章
全文:
详细
The article is devoted to the development of a method for detection of viral RNA of two highly pathogenic zoonotic viruses from the genus Henipavirus — Hendra and Nipah using real-time reverse transcription polymerase chain reaction. In the natural environment, these viruses are carried by flying foxes in the family Pteropodidae. Horses and pigs, respectively, are susceptible to infection. The diseases are also transmitted to humans through contact with sick animals, their biological excreta and from person to person. In infected humans and animals, clinical signs of infection may be asymptomatic, or may present with flu-like symptoms at the onset of the disease and progress to neurologic disease and acute respiratory infection, followed by death. In Australia, the subunit vaccine HeV-sG is used against Hendra virus in horses. There is no treatment or vaccine for Hendra or Nipah viruses for humans. The need to develop new detection methods and search for new viral targets remains an urgent task due to the large area of distribution of the described viruses, high contagiousness and mortality of animals and humans. The study describes the original designed primers and probes for conserved regions of the genomes of two viruses: the gene encoding the nucleocapsid protein of Hendra virus and the gene encoding the glycoprotein of Nipah virus. Synthetic controls for the extraction and reverse transcription PCR stages have been created, confirming the quality of the developed method. Biological samples from healthy people (blood plasma, swabs from oral and nasopharyngeal mucous membranes, cerebrospinal fluid) with the addition of artificial controls passed the stages of sample extraction and real-time reverse transcription PCR, thus confirming the quality of control samples. The detection limit of the described viral RNA identification methods was determined as 100 copies/mL for Hendra virus and 1000 copies/mL for Nipah virus. The amplification transit time is less than 90 minutes. The developed method will help in epidemiologic control of the spread of these infections, can be used in the diagnosis of Hendra and Nipah viruses and for solving research tasks to study the properties of these pathogens.
作者简介
Svetlana Shirobokova
St. Petersburg Pasteur Institute
编辑信件的主要联系方式.
Email: schirobokova.s@gmail.com
Junior Researcher, Laboratory for Molecular Genetics of Pathogens
俄罗斯联邦, St. PetersburgAnna Shabalina
St. Petersburg Pasteur Institute
Email: shabalina@pasteurorg.ru
Junior Researcher, Laboratory for Molecular Genetics of Pathogens
俄罗斯联邦, St. PetersburgIgor Sukhikh
St. Petersburg Pasteur Institute
Email: igor3419@gmail.com
PhD (Biology), Researcher, Laboratory for Molecular Genetics of Pathogens
俄罗斯联邦, St. PetersburgVera Chayeb
St. Petersburg Pasteur Institute
Email: shaieb@pasteurorg.ru
PhD (Biology), Junior Researcher, Laboratory for Molecular Genetics of Pathogens
俄罗斯联邦, St. PetersburgAnna Dolgova
St. Petersburg Pasteur Institute
Email: dolgova@pasteurorg.ru
PhD (Biology), Senior Researcher, Head of Laboratory for Molecular Genetics of Pathogens
俄罗斯联邦, St. PetersburgVladimir Dedkov
St. Petersburg Pasteur Institute; Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases
Email: vgdedkov@yandex.ru
PhD (Medicine), Deputy Director for Scientific Work, Leading Researcher
俄罗斯联邦, St. Petersburg; Moscow参考
- Aljofan M. Hendra and Nipah infection: Emerging paramyxoviruses. Virus Res., 2013, vol. 177, no. 2, pp. 119–126. doi: 10.1016/j.virusres.2013.08.002
- Annand E.J., Horsburgh B.A., Xu K., Reid P.A., Poole B., de Kantzow M.C., Brown N., Tweedie A., Michie M., Grewar J.D., Jackson A.E., Singanallur N.B., Plain K.M., Kim K., Tachedjian M., van der Heide B., Crameri S., Williams D.T., Secombe C., Laing E.D., Sterling S., Yan L., Jackson L., Jones C., Plowright R.K., Peel A.J., Breed A.C., Diallo I., Dhand N.K., Britton P.N., Broder C.C., Smith I., Eden J.-S. Novel Hendra Virus Variant Detected by Sentinel Surveillance of Horses in Australia. Emerg. Infect. Dis., 2022, vol. 28, no. 3, pp. 693–704. doi: 10.3201/eid2803.211245
- Askari M.R.A., Menezes G.A., Omran H.H., Ejaz A., Ejaz H., Hameed S.S. Nipah Virus: A Threatening Outbreak. J. Clin. Diagn. Res., 2023, vol. 17, no. 2, pp. DE01–DE07. doi: 10.7860/jcdr/2023/52734.17504
- Bangladesh reports two Nipah deaths in 2024 to date. URL: https://open.substack.com/pub/outbreaknewstoday/p/bangladesh-reports-two-nipah-deaths?utm_campaign=post&utm_medium=web
- Bossart K.N., Rockx B., Feldmann F., Brining D., Scott D., LaCasse R., Geisbert J.B., Feng Y.-R., Chan Y.-P., Hickey A.C., Broder C.C., Feldmann H., Geisbert T.W. A Hendra virus G glycoprotein subunit vaccine protects African green monkeys from Nipah virus challenge. Sci. Transl. Med., 2012, vol. 4, no. 146: 146ra107. doi: 10.1126/scitranslmed.3004241
- Business Queensland. Summary of Hendra virus incidents in horses. URL: https://www.business.qld.gov.au/industries/service-industries-professionals/service-industries/veterinary-surgeons/guidelines-hendra/incident-summary
- Chakraborty S., Deb B., Barbhuiya P.A., Uddin A. Analysis of codon usage patterns and influencing factors in Nipah virus. Virus Res., 2019, vol. 263, pp. 129–138. doi: 10.1016/j.virusres.2019.01.011
- Daniels P., Ksiazek T., Eaton B.T. Laboratory diagnosis of Nipah and Hendra virus infections. Microbes Infect., 2001, vol. 3, no. 4, pp. 289–295. doi: 10.1016/s1286-4579(01)01382-x
- Dolgova A.S., Kanaeva O.I., Antonov S.A., Shabalina A.V., Klyuchnikova E.O., Sbarzaglia V.A., Gladkikh A.S., Ivanova O.E., Kozlovskaya L.I., Dedkov V.G. Qualitative real-time RT-PCR assay for nOPV2 poliovirus detection. J. Virol. Methods., 2024, vol. 329: 114984. doi: 10.1016/j.jviromet.2024.114984
- Eaton B.T., Broder C.C., Middleton D., Wang L.-F. Hendra and Nipah viruses: different and dangerous. Nat. Rev. Microbiol., 2006, vol. 4, no. 1, pp. 23–35. doi: 10.1038/nrmicro1323
- Eaton B.T., Wang L.-F. Henipaviruses. Encycl. Virol., 2008, pp. 321–327. doi: 10.1016/b978-012374410-4.00653-1
- Gazal S., Sharma N., Gazal S., Tikoo M., Shikha D., Badroo G.A., Rashid M., Lee S.-J. Nipah and Hendra Viruses: Deadly Zoonotic Paramyxoviruses with the Potential to Cause the Next Pandemic. Pathogens, 2022, vol. 11, no. 12: 1419. doi: 10.3390/pathogens11121419
- Goncharova E.A., Dedkov V.G., Dolgova A.S., Kassirov I.S., Safonova M.V., Voytsekhovskaya Y., Totolian A.A. One‐step quantitative RT‐PCR assay with armored RNA controls for detection of SARS-CoV-2. J. Med. Virol., 2020, vol. 93, no. 3, pp. 1694–1701. doi: 10.1002/jmv.26540
- Guillaume V., Lefeuvre A., Faure C., Marianneau P., Buckland R., Lam S.K., Wild T.F., Deubel V. Specific detection of Nipah virus using real-time RT-PCR (TaqMan). J. Virol. Methods., 2004, vol. 120, no. 2, pp. 229–237. doi: 10.1016/j.jviromet.2004.05.018
- Hotard A.L., He B., Nichol S.T., Spiropoulou C.F., Lo M.K. 4′-Azidocytidine (R1479) inhibits henipaviruses and other paramyxoviruses with high potency. Antivir. Res., 2017, vol. 144, pp. 147–152. doi: 10.1016/j.antiviral.2017.06.011
- International Committee on Taxonomy of Viruses. URL: https://ictv.global/report/chapter/paramyxoviridae/paramyxoviridae/henipavirus
- Jang M., Kim S. Inhibition of Non-specific Amplification in Loop-Mediated Isothermal Amplification via Tetramethylammonium Chloride. BioChip J., 2022, vol. 16, no. 3, pp. 326–333. doi: 10.1007/s13206-022-00070-3
- Luo G.-C., Yi T.-T., Jiang B., Guo X., Zhang G.-Y. Betaine-assisted recombinase polymerase assay with enhanced specificity. Anal. Biochem., 2019, vol. 575, pp. 36–39. doi: 10.1016/j.ab.2019.03.018
- Mire C.E., Satterfield B.A., Geisbert J.B., Agans K.N., Borisevich V., Yan L., Chan Y.-P., Cross R.W., Fenton K.A., Broder C.C., Geisbert T.W. Pathogenic Differences between Nipah Virus Bangladesh and Malaysia Strains in Primates: Implications for Antibody Therapy. Sci. Rep., 2016, vol. 6: 30916. doi: 10.1038/srep30916
- Mungall B.A., Middleton D., Crameri G., Bingham J., Halpin K., Russell G., Broder C.C. Feline model of acute nipah virus infection and protection with a soluble glycoprotein-based subunit vaccine. J. Virol., 2006, vol. 80, no. 24, pp. 12293–12302. doi: 10.1128/JVI.01619-06
- Murray K., Selleck P., Hooper P., Hyatt A., Gould A., Gleeson L., Westbury H., Hiley L., Selvey L., Rodwell B., Ketterer P. A Morbillivirus that Caused Fatal Disease in Horses and Humans. Science, 1995, vol. 268, no. 5207, pp. 94–97. doi: 10.1126/science.7701348
- Nipah virus infection – Bangladesh. URL: https://www.who.int/emergencies/disease-outbreak-news/item/2024-DON508
- O’Sullivan J., Allworth A., Paterson D., Snow T., Boots R., Gleeson L., Gould A., Hyatt A., Bradfield J. Fatal encephalitis due to novel paramyxovirus transmitted from horses. Lancet, 1997, vol. 349, no. 9045, pp. 93–95. doi: 10.1016/s0140-6736(96)06162-4
- Oliveira B.B., Veigas B., Baptista P.V. Isothermal Amplification of Nucleic Acids: The Race for the Next “Gold Standard”. Front. Sens., 2021, vol. 2: 752600. doi: 10.3389/fsens.2021.752600
- One dies of Nipah virus at DMCH. URL: https://www.thedailystar.net/health/disease/news/one-dies-nipah-virus-dmch-3246971
- Pollak N.M., Olsson M., Marsh G.A., Macdonald J., McMillan D. Evaluation of three rapid low-resource molecular tests for Nipah virus. Front. Microbiol., 2023, vol. 13: 1101914. doi: 10.3389/fmicb.2022.1101914
- Rota P.A., Lo M.K. Molecular Virology of the Henipaviruses. Curr. Top. Microbiol. Immunol., 2012, vol. 359, pp. 41–58. doi: 10.1007/82_2012_211
- Satterfield B.A., Dawes B.E., Milligan G.N. Status of vaccine research and development of vaccines for Nipah virus. Vaccine, 2016, vol. 34, no. 26, pp. 2971–2975. doi: 10.1016/j.vaccine.2015.12.075
- Skowron K., Bauza-Kaszewska J., Grudlewska-Buda K., Wiktorczyk-Kapischke N., Zacharski M., Bernaciak Z., Gospodarek-Komkowska E. Nipah Virus — Another Threat From the World of Zoonotic Viruses. Front. Microbiol., 2022, vol. 12: 811157. doi: 10.3389/fmicb.2021.811157
- Smith I.L., Halpin K., Warrilow D., Smith G.A. Development of a fluorogenic RT-PCR assay (TaqMan) for the detection of Hendra virus. J. Virol. Methods., 2001, vol. 98, no. 1, pp. 33–40. doi: 10.1016/s0166-0934(01)00354-8
- Soman Pillai V., Krishna G., Valiya Veettil M. Nipah Virus: Past Outbreaks and Future Containment. Viruses, 2020, vol. 12, no. 4: 465. doi: 10.3390/v12040465
- Srivastava P., Prasad D. Isothermal nucleic acid amplification and its uses in modern diagnostic technologies. 3 Biotech., 2023, vol. 13, no. 6: 3628. doi: 10.1007/s13205-023-03628-6
- Taylor J., Thompson K., Annand E.J., Massey P.D., Bennett J., Eden J.-S., Horsburgh B.A., Hodgson E., Wood K., Kerr J., Kirkland P., Finlaison D., Peel A.J., Eby P., Durrheim D.N. Novel variant Hendra virus genotype 2 infection in a horse in the greater Newcastle region, New South Wales, Australia. One Health., 2022, vol. 15: 100423. doi: 10.1016/j.onehlt.2022.100423
- Thakur N., Bailey D. Advances in diagnostics, vaccines and therapeutics for Nipah virus. Microbes Infect., 2019, vol. 21, no. 7, pp. 278–286. doi: 10.1016/j.micinf.2019.02.002
- Wacharapluesadee S., Hemachudha T. Duplex nested RT-PCR for detection of Nipah virus RNA from urine specimens of bats. J. Virol. Methods, 2007, vol. 141, no. 1, pp. 97–101. doi: 10.1016/j.jviromet.2006.11.023
- Wang J., Anderson D.E., Halpin K., Hong X., Chen H., Walker S., Valdeter S., van der Heide B., Neave M.J., Bingham J., O’Brien D., Eagles D., Wang L.-F., Williams D.T. A new Hendra virus genotype found in Australian flying foxes. Virol. J., 2021, vol. 18, no. 1, pp. 1–13. doi: 10.1186/s12985-021-01652-7
- WHO R&D Blueprint: Priority diagnostics for Nipah use cases and target product profiles. URL: https://www.who.int/docs/default-source/blue-print/call-for-comments/who-nipah-dx-tpps-d.pdf?sfvrsn=8a856311_4
- World Health Organization. Nipah Virus. URL: https://www.who.int/news-room/fact-sheets/detail/nipah-virus
- Yang M., Zhu W., Truong T., Pickering B., Babiuk S., Kobasa D., Banadyga L. Detection of Nipah and Hendra Viruses Using Recombinant Human Ephrin B2 Capture Virus in Immunoassays. Viruses, 2022, vol. 14, no. 8: 1657. doi: 10.3390/v14081657
- Yuen K.Y., Fraser N.S., Henning J., Halpin K., Gibson J.S., Betzien L., Stewart A.J. Hendra virus: epidemiology dynamics in relation to climate change, diagnostic tests and control measures. One Health, 2021, vol. 12: 100207. doi: 10.1016/j.onehlt.2020.100207
补充文件
