Interactions Between Viral and Bacterial Pathogens in Infection Development: A Review with an Emphasis on Herpes Simplex Virus (HSV)

Cover Page

Cite item

Full Text

Abstract

The interaction between viruses and bacteria has a significant impact on human health, affecting various microbial ecosystems in the respiratory and urogenital tracts as well as in cases of ventilator-associated pneumonia. These interactions can be complex and contribute to the development of diseases. Some interactions benefit the virus directly, while others indirectly create conditions favorable for bacterial growth. For instance, viruses can damage epithelial cells, disrupt the immune system, and alter the composition of the microbiota, making the host more susceptible to bacterial infections. Conversely, bacterial species can influence viral infections by altering the host environment and potentially contributing to viral transmission. Herpes simplex virus (HSV) is a common infection caused by two types, HSV-1 and HSV-2, which can lead to various illnesses ranging from mild mucocutaneous infections to severe neurological and systemic complications. HSV-1 is often associated with cold sores, while HSV-2 primarily causes genital herpes. Both viruses are highly contagious and spread through close contact. While there’s no cure, antiviral medications can manage symptoms and reduce transmission. The prevalence of HSV-2 varies globally and is influenced by factors such as geographic location, gender, and sexual behavior. The virus can cause a wide range of symptoms depending on the infection site and the individual’s immune system. HSV can interact with various bacterial species to influence the development and progression of disease. For example, it can exacerbate periodontal disease by creating conditions favorable for bacterial growth or increase the risk of acquiring bacterial infections such as Staphylococcus aureus and Acinetobacter baumannii. Conversely, some bacteria, like Lactobacillus crispatus, can inhibit HSV infection. Additionally, HSV can interact with bacteria in specific disease contexts, such as increasing the severity of ventilator-associated pneumonia or facilitating bacterial urinary tract infections. Moreover, bacterial vaginosis is associated with an increased risk of HSV-2 acquisition. Overall, this review underscores the necessity for ongoing research into viral-bacterial interactions, particularly focusing on HSV, to enhance our understanding of disease pathogenesis and improve therapeutic and public health strategies.

About the authors

Mohammad Hassan Kalantar Neyestanaki

Arak University of Medical Sciences

Email: mohakani@yahoo.com

Medical Doctor, Department of Medicine

Iran, Islamic Republic of, Arak

Aida Mehdipour

Qom University of Medical Sciences

Author for correspondence.
Email: mkalantar1998@gmail.com

Associate Professor, Pediatric Dentistry Specialist, Cellular and Molecular Research Center

Iran, Islamic Republic of, Qom

References

  1. Almand E.A., Moore M.D., Jaykus L.A. Virus-Bacteria Interactions: An Emerging Topic in Human Infection. Viruses, 2017, vol. 9, no. 3: 58. doi: 10.3390/v9030058
  2. Bakaletz L.O. Viral-bacterial co-infections in the respiratory tract. Curr. Opin. Microbiol., 2017, vol. 35, no. 1, pp. 30–35. doi: 10.1016/j.mib.2016.11.003
  3. Birkmann A., Zimmermann H. HSV antivirals — current and future treatment options. Curr. Opin. Virol., 2016, vol. 18, no. 1, pp. 9–13. doi: 10.1016/j.coviro.2016.01.013
  4. Bosch A.A., Biesbroek G., Trzcinski K., Sanders E.A., Bogaert D. Viral and bacterial interactions in the upper respiratory tract. PLoS Pathog., 2013, vol. 9, no. 1: e1003057. doi: 10.1371/journal.ppat.1003057
  5. Bouza E., Giannella M., Torres M.V., Catalán P., Sánchez-Carrillo C., Hernandez R.I., Muñoz P. Herpes simplex virus: a marker of severity in bacterial ventilator-associated pneumonia. J. Crit. Care, 2011, vol. 26, no. 4: 432.e1–432.e6. doi: 10.1016/j.jcrc.2010.10.008
  6. Casto A.M., Roychoudhury P., Xie H., Selke S., Perchetti G.A., Wofford H., Huang M.L., Verjans G.M.G.M., Gottlieb G.S., Wald A., Jerome K.R., Koelle D.M., Johnston C., Greninger A.L. Large, Stable, Contemporary Interspecies Recombination Events in Circulating Human Herpes Simplex Viruses. J. Infect. Dis., 2020, vol. 221, no. 8, pp. 1271–1279. doi: 10.1093/infdis/jiz199
  7. Chang J.Y., Balch C., Puccio J., Oh H.S. A narrative review of alternative symptomatic treatments for herpes simplex virus. Viruses, 2023, vol. 15, no. 6: 1314. doi: 10.3390/v15061314
  8. Cherpes T.L., Melan M.A., Kant J.A., Cosentino L.A., Meyn L.A., Hillier S.L. Genital tract shedding of herpes simplex virus type 2 in women: effects of hormonal contraception, bacterial vaginosis, and vaginal group B Streptococcus colonization. Clin. Infect. Dis., 2005, vol. 40, no. 10, pp. 1422–1428. doi: 10.1086/429622
  9. Cole S. Herpes Simplex Virus: Epidemiology, Diagnosis, and Treatment. Nurs. Clin. North Am., 2020, vol. 55, no. 3, pp. 337–345. doi: 10.1016/j.cnur.2020.05.004
  10. Contreras A., Slots J. Herpesviruses in human periodontal disease. J. Periodontal Res., 2000, vol. 35, no. 1, pp. 3–16. doi: 10.1034/j.1600-0765.2000.035001003.x
  11. Dai L., DeFee M.R., Cao Y., Wen J., Wen X., Noverr M.C., Qin Z. Lipoteichoic acid (LTA) and lipopolysaccharides (LPS) from periodontal pathogenic bacteria facilitate oncogenic herpesvirus infection within primary oral cells. PLoS One, 2014, vol. 9, no. 6: e101326. doi: 10.1371/journal.pone.0101326
  12. Esber A., Vicetti Miguel R.D., Cherpes T.L., Klebanoff M.A., Gallo M.F., Turner A.N. Risk of Bacterial Vaginosis Among Women With Herpes Simplex Virus Type 2 Infection: A Systematic Review and Meta-analysis. J. Infect. Dis., 2015, vol. 212, no. 1, pp. 8–17. doi: 10.1093/infdis/jiv017
  13. Fatahzadeh M., Schwartz R.A. Human herpes simplex virus infections: epidemiology, pathogenesis, symptomatology, diagnosis, and management. J. Am. Acad. Dermatol., 2007, vol. 57, no. 5, pp. 737–763. doi: 10.1016/j.jaad.2007.06.027
  14. Freeman E.E., Weiss H.A., Glynn J.R., Cross P.L., Whitworth J.A., Hayes R.J. Herpes simplex virus 2 infection increases HIV acquisition in men and women: systematic review and meta-analysis of longitudinal studies. AIDS, 2006, vol. 20, no. 1, pp. 73–83. doi: 10.1097/01.aids.0000198081.09337.a7
  15. Groeger S.E., Meyle J. Epithelial barrier and oral bacterial infection. Periodontol. 2000, 2015, vol. 69, no. 1, pp. 46–67. doi: 10.1111/prd.12094
  16. Hedlund M., Aschenbrenner L.M., Jensen K., Larson J.L., Fang F. Sialidase-based anti-influenza virus therapy protects against secondary pneumococcal infection. J. Infect. Dis., 2010, vol. 201, no. 7, pp. 1007–1015. doi: 10.1086/651170
  17. Johnston C., Gottlieb S.L., Wald A. Status of vaccine research and development of vaccines for herpes simplex virus. Vaccine, 2016, vol. 34, no. 26, pp. 2948–2952. doi: 10.1016/j.vaccine.2015.12.076
  18. Kamma J.J., Contreras A., Slots J. Herpes viruses and periodontopathic bacteria in early-onset periodontitis. J. Clin. Periodontol., 2001, vol. 28, no. 9, pp. 879–885. doi: 10.1034/j.1600-051x.2001.028009879.x
  19. Kane M., Case L.K., Kopaskie K., Kozlova A., MacDearmid C., Chervonsky A.V., Golovkina T.V. Successful transmission of a retrovirus depends on the commensal microbiota. Science, 2011, vol. 334, no. 6053, pp. 245–249. doi: 10.1126/science.1210718
  20. Kash J.C., Taubenberger J.K. The role of viral, host, and secondary bacterial factors in influenza pathogenesis. Am. J. Pathol., 2015, vol. 185, no. 6, pp. 1528–1536. doi: 10.1016/j.ajpath.2014.08.030
  21. Kc R., Shukla S.D., Walters E.H., O’Toole R.F. Temporal upregulation of host surface receptors provides a window of opportunity for bacterial adhesion and disease. Microbiology (Reading), 2017, vol. 163, no. 4, pp. 421–430. doi: 10.1099/mic.0.000434
  22. Khosravi A., Mazmanian S.K. Disruption of the gut microbiome as a risk factor for microbial infections. Curr. Opin. Microbiol., 2013, vol. 16, no. 2, pp. 221–227. doi: 10.1016/j.mib.2013.03.009
  23. Kuss S.K., Best G.T., Etheredge C.A., Pruijssers A.J., Frierson J.M., Hooper L.V., Dermody T.S., Pfeiffer J.K. Intestinal microbiota promote enteric virus replication and systemic pathogenesis. Science, 2011, vol. 334, no. 6053, pp. 249–252. doi: 10.1126/science.1211057
  24. Looker K.J., Elmes J.A.R., Gottlieb S.L., Schiffer J.T., Vickerman P., Turner K.M.E., Boily M.C. Effect of HSV-2 infection on subsequent HIV acquisition: an updated systematic review and meta-analysis. Lancet Infect. Dis., 2017, vol. 17, no. 12, pp. 1303–1316. doi: 10.1016/S1473-3099(17)30405-X
  25. Lozupone C.A., Stombaugh J.I., Gordon J.I., Jansson J.K., Knight R. Diversity, stability and resilience of the human gut microbiota. Nature, 2012, vol. 489, no. 7415, pp. 220–230. doi: 10.1038/nature11550
  26. Manna S., Baindara P., Mandal S.M. Molecular pathogenesis of secondary bacterial infection associated to viral infections including SARS-CoV-2. J. Infect. Public Health, 2020, vol. 13, no. 10, pp. 1397–1404. doi: 10.1016/j.jiph.2020.07.003
  27. Meier A.F., Tobler K., Michaelsen K., Vogt B., Henckaerts E., Fraefel C. Herpes Simplex Virus 1 Coinfection Modifies Adeno-associated Virus Genome End Recombination. J. Virol., 2021, vol. 95, no. 13: e0048621. doi: 10.1128/JVI.00486-21
  28. Moore M.D., Jaykus L.A. Virus-Bacteria Interactions: Implications and Potential for the Applied and Agricultural Sciences. Viruses, 2018, vol. 10, no. 2: 61. doi: 10.3390/v10020061
  29. Mousavi E., Makvandi M., Teimoori A., Ataei A., Ghafari S., Samarbaf-Zadeh A. Antiviral effects of Lactobacillus crispatus against HSV-2 in mammalian cell lines. J. Chin. Med. Assoc., 2018, vol. 81, no. 3, pp. 262–267. doi: 10.1016/j.jcma.2017.07.010
  30. Neu U., Mainou B.A. Virus interactions with bacteria: Partners in the infectious dance. PLoS Pathog., 2020, vol. 16, no. 2: e1008234. doi: 10.1371/journal.ppat.1008234
  31. O’Toole R.F., Shukla S.D., Walters E.H. Does upregulated host cell receptor expression provide a link between bacterial adhesion and chronic respiratory disease? J. Transl. Med., 2016, vol. 14, no. 1: 304. doi: 10.1186/s12967-016-1063-x
  32. Oliveira de Almeida M., Carvalho R., Figueira Aburjaile F., Malcher Miranda F., Canário Cerqueira J., Brenig B., Ghosh P., Ramos R., Kato R.B., de Castro Soares S., Silva A., Azevedo V., Canário Viana M.V. Characterization of the first vaginal Lactobacillus crispatus genomes isolated in Brazil. PeerJ, 2021, vol. 9: e11079. doi: 10.7717/peerj.11079
  33. Petti S., Lodi G. The controversial natural history of oral herpes simplex virus type 1 infection. Oral Dis., 2019, vol. 25, no. 8, pp. 1850–1865. doi: 10.1111/odi.13234
  34. Rice S.A. Release of HSV-1 Cell-Free Virions: Mechanisms, Regulation, and Likely Role in Human-Human Transmission. Viruses, 2021, vol. 13, no. 12: 2395. doi: 10.3390/v13122395
  35. Robledo Gonzalez L., Tat R.P., Greaves J.C., Robinson C.M. Viral-Bacterial Interactions That Impact Viral Thermostability and Transmission. Viruses, 2023, vol. 15, no. 12: 2415. doi: 10.3390/v15122415
  36. Rodrigues P.M., Teixeira A.L., Kustner E.C., Medeiros R. Are herpes virus associated to aggressive periodontitis? A review of literature. J. Oral Maxillofac. Pathol., 2015, vol. 19, no. 3, pp. 348–355. doi: 10.4103/0973-029X.174621
  37. Rossi G.A., Fanous H., Colin A.A. Viral strategies predisposing to respiratory bacterial superinfections. Pediatr. Pulmonol., 2020, vol. 55, no. 4, pp. 1061–1073. doi: 10.1002/ppul.24699
  38. Said M.S., Tirthani E., Lesho E. Enterococcus Infections. StatPearls [Internet], 2024. URL: https://pubmed.ncbi.nlm.nih.gov/33620836
  39. Sajjan U., Wang Q., Zhao Y., Gruenert D.C., Hershenson M.B. Rhinovirus disrupts the barrier function of polarized airway epithelial cells. Am. J. Respir. Crit. Care Med., 2008, vol. 178, no. 12, pp. 1271–1281. doi: 10.1164/rccm.200801-136OC
  40. Slots J. Interactions between Herpesviruses and Bacteria in Human Periodontal Disease. In: Brogden K.A., Guthmiller J.M. (eds.) Polymicrobial Diseases. Washington (DC): ASM Press, 2002, Chapter 16, год обращения: 2025, ссылка: https://www.ncbi.nlm.nih.gov/books/NBK2484/
  41. Smith C.B., Golden C., Klauber M.R., Kanner R., Renzetti A. Interactions between viruses and bacteria in patients with chronic bronchitis. J. Infect. Dis., 1976, vol. 134, no. 6, pp. 552–561. doi: 10.1093/infdis/134.6.552
  42. Sommer F., Bäckhed F. The gut microbiota — masters of host development and physiology. Nat. Rev. Microbiol., 2013, vol. 11, no. 4, pp. 227–238. doi: 10.1038/nrmicro2974
  43. Steed A.L., Stappenbeck T.S. Role of viruses and bacteria-virus interactions in autoimmunity. Curr. Opin. Immunol., 2014, vol. 31, no. 1, pp. 102–107. doi: 10.1016/j.coi.2014.10.006
  44. Superti F., Longhi C., Di Biase A.M., Tinari A., Marchetti M., Pisani S., Gallinelli C., Chiarini F., Seganti L. Herpes simplex virus type 2 modulates the susceptibility of human bladder cells to uropathogenic bacteria. Med. Microbiol. Immunol., 2001, vol. 189, no. 4, pp. 201–208. doi: 10.1007/s004300100067
  45. Tugizov S. Virus-associated disruption of mucosal epithelial tight junctions and its role in viral transmission and spread. Tissue Barriers, 2021, vol. 9, no. 4: 1943274. doi: 10.1080/21688370.2021.1943274
  46. Van Der Sluijs K.F., van der Poll T., Lutter R., Juffermans N.P., Schultz M.J. Bench-to-bedside review: bacterial pneumonia with influenza—pathogenesis and clinical implications. Crit. Care, 2010, vol. 14, no. 2: 219. doi: 10.1186/cc8893
  47. Van Wagoner N., Qushair F., Johnston C. Genital herpes infection: progress and problems. Infect. Dis. Clin. North Am., 2023, vol. 37, no. 2, pp. 351–367. doi: 10.1016/j.idc.2023.02.011
  48. Verkaik N.J., Nguyen D.T., de Vogel C.P., Moll H.A., Verbrugh H.A., Jaddoe V.W., Hofman A., van Wamel W.J., van den Hoogen B.G., Buijs-Offerman R.M., Ludlow M., de Witte L., Osterhaus A.D., van Belkum A., de Swart R.L. Streptococcus pneumoniae exposure is associated with human metapneumovirus seroconversion and increased susceptibility to in vitro HMPV infection. Clin. Microbiol. Infect., 2011, vol. 17, no. 12, pp. 1840–1844. doi: 10.1111/j.1469-0691.2011.03480.x
  49. Wachsman M.B., Castilla V., de Ruiz Holgado A.P., de Torres R.A., Sesma F., Coto C.E. Enterocin CRL35 inhibits late stages of HSV-1 and HSV-2 replication in vitro. Antiviral Res., 2003, vol. 58, no. 1, pp. 17–24. doi: 10.1016/s0166-3542(02)00099-2
  50. Wei Y., Palacios Araya D., Palmer K.L. Enterococcus faecium: evolution, adaptation, pathogenesis and emerging therapeutics. Nat. Rev. Microbiol., 2024, vol. 22, no. 11, pp. 705–721. doi: 10.1038/s41579-024-01058-6
  51. Wertheim J.O., Hostager R., Ryu D., Merkel K., Angedakin S., Arandjelovic M., Ayimisin E.A., Babweteera F., Bessone M., Brun-Jeffery K.J., Dieguez P., Eckardt W., Fruth B., Herbinger I., Jones S., Kuehl H., Langergraber K.E., Lee K., Madinda N.F., Metzger S., Ormsby L.J., Robbins M.M., Sommer V., Stoinski T., Wessling E.G., Wittig R.M., Yuh Y.G., Leendertz F.H., Calvignac-Spencer S. Discovery of novel herpes simplexviruses in wild gorillas, bonobos, and chimpanzees supports zoonotic origin of HSV-2. Mol. Biol. Evol., 2021, vol. 38, no. 7, pp. 2818–2830. doi: 10.1093/molbev/msab072
  52. Whitley R.J. Herpes simplex virus infection. Semin. Pediatr. Infect. Dis., 2002, vol. 13, no. 1, pp. 6–11. doi: 10.1053/spid.2002.29752
  53. Wiertsema S.P., Chidlow G.R., Kirkham L.A., Corscadden K.J., Mowe E.N., Vijayasekaran S., Coates H.L., Harnett G.B., Richmond P.C. High detection rates of nucleic acids of a wide range of respiratory viruses in the nasopharynx and the middle ear of children with a history of recurrent acute otitis media. J. Med. Virol., 2011, vol. 83, no. 11, pp. 2008–2017. doi: 10.1002/jmv.22221
  54. Zhu S., Viejo-Borbolla A. Pathogenesis and virulence of herpes simplex virus. Virulence, 2021, vol. 12, no. 1, pp. 2670–2702. doi: 10.1080/21505594.2021.1982374

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Illustration for the article “The interaction between viral and bacterial infections: a comprehensive review focusing on Herpes Simplex Virus (HSV)” (authors: Kalantar Neyestanaki M.H., Mehdipour A.) (pp. 465–475)

Download (425KB)
3. Illustration for the article “The interaction between viral and bacterial infections: a comprehensive review focusing on Herpes Simplex Virus (HSV)” (authors: Kalantar Neyestanaki M.H., Mehdipour A.) (pp. 465–475)

Download (1MB)

Copyright (c) 2025 Kalantar Neyestanaki M., Mehdipour A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».