Interactions Between Viral and Bacterial Pathogens in Infection Development: A Review with an Emphasis on Herpes Simplex Virus (HSV)
- Authors: Kalantar Neyestanaki M.1, Mehdipour A.2
-
Affiliations:
- Arak University of Medical Sciences
- Qom University of Medical Sciences
- Issue: Vol 15, No 3 (2025)
- Pages: 465-475
- Section: REVIEWS
- URL: https://bakhtiniada.ru/2220-7619/article/view/315129
- DOI: https://doi.org/10.15789/2220-7619-TIB-17749
- ID: 315129
Cite item
Full Text
Abstract
The interaction between viruses and bacteria has a significant impact on human health, affecting various microbial ecosystems in the respiratory and urogenital tracts as well as in cases of ventilator-associated pneumonia. These interactions can be complex and contribute to the development of diseases. Some interactions benefit the virus directly, while others indirectly create conditions favorable for bacterial growth. For instance, viruses can damage epithelial cells, disrupt the immune system, and alter the composition of the microbiota, making the host more susceptible to bacterial infections. Conversely, bacterial species can influence viral infections by altering the host environment and potentially contributing to viral transmission. Herpes simplex virus (HSV) is a common infection caused by two types, HSV-1 and HSV-2, which can lead to various illnesses ranging from mild mucocutaneous infections to severe neurological and systemic complications. HSV-1 is often associated with cold sores, while HSV-2 primarily causes genital herpes. Both viruses are highly contagious and spread through close contact. While there’s no cure, antiviral medications can manage symptoms and reduce transmission. The prevalence of HSV-2 varies globally and is influenced by factors such as geographic location, gender, and sexual behavior. The virus can cause a wide range of symptoms depending on the infection site and the individual’s immune system. HSV can interact with various bacterial species to influence the development and progression of disease. For example, it can exacerbate periodontal disease by creating conditions favorable for bacterial growth or increase the risk of acquiring bacterial infections such as Staphylococcus aureus and Acinetobacter baumannii. Conversely, some bacteria, like Lactobacillus crispatus, can inhibit HSV infection. Additionally, HSV can interact with bacteria in specific disease contexts, such as increasing the severity of ventilator-associated pneumonia or facilitating bacterial urinary tract infections. Moreover, bacterial vaginosis is associated with an increased risk of HSV-2 acquisition. Overall, this review underscores the necessity for ongoing research into viral-bacterial interactions, particularly focusing on HSV, to enhance our understanding of disease pathogenesis and improve therapeutic and public health strategies.
Full Text
##article.viewOnOriginalSite##About the authors
Mohammad Hassan Kalantar Neyestanaki
Arak University of Medical Sciences
Email: mohakani@yahoo.com
Medical Doctor, Department of Medicine
Iran, Islamic Republic of, ArakAida Mehdipour
Qom University of Medical Sciences
Author for correspondence.
Email: mkalantar1998@gmail.com
Associate Professor, Pediatric Dentistry Specialist, Cellular and Molecular Research Center
Iran, Islamic Republic of, QomReferences
- Almand E.A., Moore M.D., Jaykus L.A. Virus-Bacteria Interactions: An Emerging Topic in Human Infection. Viruses, 2017, vol. 9, no. 3: 58. doi: 10.3390/v9030058
- Bakaletz L.O. Viral-bacterial co-infections in the respiratory tract. Curr. Opin. Microbiol., 2017, vol. 35, no. 1, pp. 30–35. doi: 10.1016/j.mib.2016.11.003
- Birkmann A., Zimmermann H. HSV antivirals — current and future treatment options. Curr. Opin. Virol., 2016, vol. 18, no. 1, pp. 9–13. doi: 10.1016/j.coviro.2016.01.013
- Bosch A.A., Biesbroek G., Trzcinski K., Sanders E.A., Bogaert D. Viral and bacterial interactions in the upper respiratory tract. PLoS Pathog., 2013, vol. 9, no. 1: e1003057. doi: 10.1371/journal.ppat.1003057
- Bouza E., Giannella M., Torres M.V., Catalán P., Sánchez-Carrillo C., Hernandez R.I., Muñoz P. Herpes simplex virus: a marker of severity in bacterial ventilator-associated pneumonia. J. Crit. Care, 2011, vol. 26, no. 4: 432.e1–432.e6. doi: 10.1016/j.jcrc.2010.10.008
- Casto A.M., Roychoudhury P., Xie H., Selke S., Perchetti G.A., Wofford H., Huang M.L., Verjans G.M.G.M., Gottlieb G.S., Wald A., Jerome K.R., Koelle D.M., Johnston C., Greninger A.L. Large, Stable, Contemporary Interspecies Recombination Events in Circulating Human Herpes Simplex Viruses. J. Infect. Dis., 2020, vol. 221, no. 8, pp. 1271–1279. doi: 10.1093/infdis/jiz199
- Chang J.Y., Balch C., Puccio J., Oh H.S. A narrative review of alternative symptomatic treatments for herpes simplex virus. Viruses, 2023, vol. 15, no. 6: 1314. doi: 10.3390/v15061314
- Cherpes T.L., Melan M.A., Kant J.A., Cosentino L.A., Meyn L.A., Hillier S.L. Genital tract shedding of herpes simplex virus type 2 in women: effects of hormonal contraception, bacterial vaginosis, and vaginal group B Streptococcus colonization. Clin. Infect. Dis., 2005, vol. 40, no. 10, pp. 1422–1428. doi: 10.1086/429622
- Cole S. Herpes Simplex Virus: Epidemiology, Diagnosis, and Treatment. Nurs. Clin. North Am., 2020, vol. 55, no. 3, pp. 337–345. doi: 10.1016/j.cnur.2020.05.004
- Contreras A., Slots J. Herpesviruses in human periodontal disease. J. Periodontal Res., 2000, vol. 35, no. 1, pp. 3–16. doi: 10.1034/j.1600-0765.2000.035001003.x
- Dai L., DeFee M.R., Cao Y., Wen J., Wen X., Noverr M.C., Qin Z. Lipoteichoic acid (LTA) and lipopolysaccharides (LPS) from periodontal pathogenic bacteria facilitate oncogenic herpesvirus infection within primary oral cells. PLoS One, 2014, vol. 9, no. 6: e101326. doi: 10.1371/journal.pone.0101326
- Esber A., Vicetti Miguel R.D., Cherpes T.L., Klebanoff M.A., Gallo M.F., Turner A.N. Risk of Bacterial Vaginosis Among Women With Herpes Simplex Virus Type 2 Infection: A Systematic Review and Meta-analysis. J. Infect. Dis., 2015, vol. 212, no. 1, pp. 8–17. doi: 10.1093/infdis/jiv017
- Fatahzadeh M., Schwartz R.A. Human herpes simplex virus infections: epidemiology, pathogenesis, symptomatology, diagnosis, and management. J. Am. Acad. Dermatol., 2007, vol. 57, no. 5, pp. 737–763. doi: 10.1016/j.jaad.2007.06.027
- Freeman E.E., Weiss H.A., Glynn J.R., Cross P.L., Whitworth J.A., Hayes R.J. Herpes simplex virus 2 infection increases HIV acquisition in men and women: systematic review and meta-analysis of longitudinal studies. AIDS, 2006, vol. 20, no. 1, pp. 73–83. doi: 10.1097/01.aids.0000198081.09337.a7
- Groeger S.E., Meyle J. Epithelial barrier and oral bacterial infection. Periodontol. 2000, 2015, vol. 69, no. 1, pp. 46–67. doi: 10.1111/prd.12094
- Hedlund M., Aschenbrenner L.M., Jensen K., Larson J.L., Fang F. Sialidase-based anti-influenza virus therapy protects against secondary pneumococcal infection. J. Infect. Dis., 2010, vol. 201, no. 7, pp. 1007–1015. doi: 10.1086/651170
- Johnston C., Gottlieb S.L., Wald A. Status of vaccine research and development of vaccines for herpes simplex virus. Vaccine, 2016, vol. 34, no. 26, pp. 2948–2952. doi: 10.1016/j.vaccine.2015.12.076
- Kamma J.J., Contreras A., Slots J. Herpes viruses and periodontopathic bacteria in early-onset periodontitis. J. Clin. Periodontol., 2001, vol. 28, no. 9, pp. 879–885. doi: 10.1034/j.1600-051x.2001.028009879.x
- Kane M., Case L.K., Kopaskie K., Kozlova A., MacDearmid C., Chervonsky A.V., Golovkina T.V. Successful transmission of a retrovirus depends on the commensal microbiota. Science, 2011, vol. 334, no. 6053, pp. 245–249. doi: 10.1126/science.1210718
- Kash J.C., Taubenberger J.K. The role of viral, host, and secondary bacterial factors in influenza pathogenesis. Am. J. Pathol., 2015, vol. 185, no. 6, pp. 1528–1536. doi: 10.1016/j.ajpath.2014.08.030
- Kc R., Shukla S.D., Walters E.H., O’Toole R.F. Temporal upregulation of host surface receptors provides a window of opportunity for bacterial adhesion and disease. Microbiology (Reading), 2017, vol. 163, no. 4, pp. 421–430. doi: 10.1099/mic.0.000434
- Khosravi A., Mazmanian S.K. Disruption of the gut microbiome as a risk factor for microbial infections. Curr. Opin. Microbiol., 2013, vol. 16, no. 2, pp. 221–227. doi: 10.1016/j.mib.2013.03.009
- Kuss S.K., Best G.T., Etheredge C.A., Pruijssers A.J., Frierson J.M., Hooper L.V., Dermody T.S., Pfeiffer J.K. Intestinal microbiota promote enteric virus replication and systemic pathogenesis. Science, 2011, vol. 334, no. 6053, pp. 249–252. doi: 10.1126/science.1211057
- Looker K.J., Elmes J.A.R., Gottlieb S.L., Schiffer J.T., Vickerman P., Turner K.M.E., Boily M.C. Effect of HSV-2 infection on subsequent HIV acquisition: an updated systematic review and meta-analysis. Lancet Infect. Dis., 2017, vol. 17, no. 12, pp. 1303–1316. doi: 10.1016/S1473-3099(17)30405-X
- Lozupone C.A., Stombaugh J.I., Gordon J.I., Jansson J.K., Knight R. Diversity, stability and resilience of the human gut microbiota. Nature, 2012, vol. 489, no. 7415, pp. 220–230. doi: 10.1038/nature11550
- Manna S., Baindara P., Mandal S.M. Molecular pathogenesis of secondary bacterial infection associated to viral infections including SARS-CoV-2. J. Infect. Public Health, 2020, vol. 13, no. 10, pp. 1397–1404. doi: 10.1016/j.jiph.2020.07.003
- Meier A.F., Tobler K., Michaelsen K., Vogt B., Henckaerts E., Fraefel C. Herpes Simplex Virus 1 Coinfection Modifies Adeno-associated Virus Genome End Recombination. J. Virol., 2021, vol. 95, no. 13: e0048621. doi: 10.1128/JVI.00486-21
- Moore M.D., Jaykus L.A. Virus-Bacteria Interactions: Implications and Potential for the Applied and Agricultural Sciences. Viruses, 2018, vol. 10, no. 2: 61. doi: 10.3390/v10020061
- Mousavi E., Makvandi M., Teimoori A., Ataei A., Ghafari S., Samarbaf-Zadeh A. Antiviral effects of Lactobacillus crispatus against HSV-2 in mammalian cell lines. J. Chin. Med. Assoc., 2018, vol. 81, no. 3, pp. 262–267. doi: 10.1016/j.jcma.2017.07.010
- Neu U., Mainou B.A. Virus interactions with bacteria: Partners in the infectious dance. PLoS Pathog., 2020, vol. 16, no. 2: e1008234. doi: 10.1371/journal.ppat.1008234
- O’Toole R.F., Shukla S.D., Walters E.H. Does upregulated host cell receptor expression provide a link between bacterial adhesion and chronic respiratory disease? J. Transl. Med., 2016, vol. 14, no. 1: 304. doi: 10.1186/s12967-016-1063-x
- Oliveira de Almeida M., Carvalho R., Figueira Aburjaile F., Malcher Miranda F., Canário Cerqueira J., Brenig B., Ghosh P., Ramos R., Kato R.B., de Castro Soares S., Silva A., Azevedo V., Canário Viana M.V. Characterization of the first vaginal Lactobacillus crispatus genomes isolated in Brazil. PeerJ, 2021, vol. 9: e11079. doi: 10.7717/peerj.11079
- Petti S., Lodi G. The controversial natural history of oral herpes simplex virus type 1 infection. Oral Dis., 2019, vol. 25, no. 8, pp. 1850–1865. doi: 10.1111/odi.13234
- Rice S.A. Release of HSV-1 Cell-Free Virions: Mechanisms, Regulation, and Likely Role in Human-Human Transmission. Viruses, 2021, vol. 13, no. 12: 2395. doi: 10.3390/v13122395
- Robledo Gonzalez L., Tat R.P., Greaves J.C., Robinson C.M. Viral-Bacterial Interactions That Impact Viral Thermostability and Transmission. Viruses, 2023, vol. 15, no. 12: 2415. doi: 10.3390/v15122415
- Rodrigues P.M., Teixeira A.L., Kustner E.C., Medeiros R. Are herpes virus associated to aggressive periodontitis? A review of literature. J. Oral Maxillofac. Pathol., 2015, vol. 19, no. 3, pp. 348–355. doi: 10.4103/0973-029X.174621
- Rossi G.A., Fanous H., Colin A.A. Viral strategies predisposing to respiratory bacterial superinfections. Pediatr. Pulmonol., 2020, vol. 55, no. 4, pp. 1061–1073. doi: 10.1002/ppul.24699
- Said M.S., Tirthani E., Lesho E. Enterococcus Infections. StatPearls [Internet], 2024. URL: https://pubmed.ncbi.nlm.nih.gov/33620836
- Sajjan U., Wang Q., Zhao Y., Gruenert D.C., Hershenson M.B. Rhinovirus disrupts the barrier function of polarized airway epithelial cells. Am. J. Respir. Crit. Care Med., 2008, vol. 178, no. 12, pp. 1271–1281. doi: 10.1164/rccm.200801-136OC
- Slots J. Interactions between Herpesviruses and Bacteria in Human Periodontal Disease. In: Brogden K.A., Guthmiller J.M. (eds.) Polymicrobial Diseases. Washington (DC): ASM Press, 2002, Chapter 16, год обращения: 2025, ссылка: https://www.ncbi.nlm.nih.gov/books/NBK2484/
- Smith C.B., Golden C., Klauber M.R., Kanner R., Renzetti A. Interactions between viruses and bacteria in patients with chronic bronchitis. J. Infect. Dis., 1976, vol. 134, no. 6, pp. 552–561. doi: 10.1093/infdis/134.6.552
- Sommer F., Bäckhed F. The gut microbiota — masters of host development and physiology. Nat. Rev. Microbiol., 2013, vol. 11, no. 4, pp. 227–238. doi: 10.1038/nrmicro2974
- Steed A.L., Stappenbeck T.S. Role of viruses and bacteria-virus interactions in autoimmunity. Curr. Opin. Immunol., 2014, vol. 31, no. 1, pp. 102–107. doi: 10.1016/j.coi.2014.10.006
- Superti F., Longhi C., Di Biase A.M., Tinari A., Marchetti M., Pisani S., Gallinelli C., Chiarini F., Seganti L. Herpes simplex virus type 2 modulates the susceptibility of human bladder cells to uropathogenic bacteria. Med. Microbiol. Immunol., 2001, vol. 189, no. 4, pp. 201–208. doi: 10.1007/s004300100067
- Tugizov S. Virus-associated disruption of mucosal epithelial tight junctions and its role in viral transmission and spread. Tissue Barriers, 2021, vol. 9, no. 4: 1943274. doi: 10.1080/21688370.2021.1943274
- Van Der Sluijs K.F., van der Poll T., Lutter R., Juffermans N.P., Schultz M.J. Bench-to-bedside review: bacterial pneumonia with influenza—pathogenesis and clinical implications. Crit. Care, 2010, vol. 14, no. 2: 219. doi: 10.1186/cc8893
- Van Wagoner N., Qushair F., Johnston C. Genital herpes infection: progress and problems. Infect. Dis. Clin. North Am., 2023, vol. 37, no. 2, pp. 351–367. doi: 10.1016/j.idc.2023.02.011
- Verkaik N.J., Nguyen D.T., de Vogel C.P., Moll H.A., Verbrugh H.A., Jaddoe V.W., Hofman A., van Wamel W.J., van den Hoogen B.G., Buijs-Offerman R.M., Ludlow M., de Witte L., Osterhaus A.D., van Belkum A., de Swart R.L. Streptococcus pneumoniae exposure is associated with human metapneumovirus seroconversion and increased susceptibility to in vitro HMPV infection. Clin. Microbiol. Infect., 2011, vol. 17, no. 12, pp. 1840–1844. doi: 10.1111/j.1469-0691.2011.03480.x
- Wachsman M.B., Castilla V., de Ruiz Holgado A.P., de Torres R.A., Sesma F., Coto C.E. Enterocin CRL35 inhibits late stages of HSV-1 and HSV-2 replication in vitro. Antiviral Res., 2003, vol. 58, no. 1, pp. 17–24. doi: 10.1016/s0166-3542(02)00099-2
- Wei Y., Palacios Araya D., Palmer K.L. Enterococcus faecium: evolution, adaptation, pathogenesis and emerging therapeutics. Nat. Rev. Microbiol., 2024, vol. 22, no. 11, pp. 705–721. doi: 10.1038/s41579-024-01058-6
- Wertheim J.O., Hostager R., Ryu D., Merkel K., Angedakin S., Arandjelovic M., Ayimisin E.A., Babweteera F., Bessone M., Brun-Jeffery K.J., Dieguez P., Eckardt W., Fruth B., Herbinger I., Jones S., Kuehl H., Langergraber K.E., Lee K., Madinda N.F., Metzger S., Ormsby L.J., Robbins M.M., Sommer V., Stoinski T., Wessling E.G., Wittig R.M., Yuh Y.G., Leendertz F.H., Calvignac-Spencer S. Discovery of novel herpes simplexviruses in wild gorillas, bonobos, and chimpanzees supports zoonotic origin of HSV-2. Mol. Biol. Evol., 2021, vol. 38, no. 7, pp. 2818–2830. doi: 10.1093/molbev/msab072
- Whitley R.J. Herpes simplex virus infection. Semin. Pediatr. Infect. Dis., 2002, vol. 13, no. 1, pp. 6–11. doi: 10.1053/spid.2002.29752
- Wiertsema S.P., Chidlow G.R., Kirkham L.A., Corscadden K.J., Mowe E.N., Vijayasekaran S., Coates H.L., Harnett G.B., Richmond P.C. High detection rates of nucleic acids of a wide range of respiratory viruses in the nasopharynx and the middle ear of children with a history of recurrent acute otitis media. J. Med. Virol., 2011, vol. 83, no. 11, pp. 2008–2017. doi: 10.1002/jmv.22221
- Zhu S., Viejo-Borbolla A. Pathogenesis and virulence of herpes simplex virus. Virulence, 2021, vol. 12, no. 1, pp. 2670–2702. doi: 10.1080/21505594.2021.1982374
Supplementary files
