Взаимодействия между вирусными и бактериальными патогенами в развитии инфекций: обзор с акцентом на вирус простого герпеса
- Авторы: Калантар Неестанаки М.1, Мехдипур А.2
-
Учреждения:
- Аракский университет медицинских наук
- Кумский университет медицинских наук
- Выпуск: Том 15, № 3 (2025)
- Страницы: 465-475
- Раздел: ОБЗОРЫ
- URL: https://bakhtiniada.ru/2220-7619/article/view/315129
- DOI: https://doi.org/10.15789/2220-7619-TIB-17749
- ID: 315129
Цитировать
Полный текст
Аннотация
Взаимодействие между вирусами и бактериями оказывает значительное влияние на здоровье человека, затрагивая различные микробные экосистемы в дыхательных и мочеполовых путях, а также в случаях вентилятор-ассоциированной пневмонии. Такие взаимодействия могут быть сложными и способствовать развитию заболеваний. Ряд взаимодействий могут непосредственно поддерживать жизненный цикл вируса, в то время как другие косвенно создают условия, благоприятные для роста бактерий. Например, вирусы могут повреждать эпителиальные клетки, нарушать иммунную систему и изменять состав микробиоты, делая организм хозяина более восприимчивым к бактериальным инфекциям. И наоборот, бактерии могут влиять на вирусные инфекции, изменяя гомеостаз организма хозяина и потенциально способствовать распространению вируса. Вирус простого герпеса (ВПГ) первого и второго типа (ВПГ-1 и ВПГ-2) вызывает распространенную инфекцию, проявляющуюся как в виде легких слизисто-кожных инфекций, так и в виде тяжелых неврологических и системных поражений. ВПГ-1 часто ассоциируется с герпесом на губах, в то время как ВПГ-2 в первую очередь вызывает генитальный герпес. Оба вируса крайне контагиозны и распространяются при близком контакте. Хотя существующие лекарства не приводят к элиминации вирусов, противовирусные препараты способны контролировать симптомы и снижать их распространение. Уровень инфицирования ВПГ-2 варьирует в разных странах и зависит от таких факторов, как географическое положение, пол и сексуальное поведение человека. Вирус может вызывать широкий спектр симптомов в зависимости от места инфицирования и сохранности иммунной системы человека. ВПГ может взаимодействовать с различными видами бактерий, влияя на развитие и прогрессирование заболевания. Например, он может усугублять пародонтоз, создавая условия, благоприятные для роста бактерий, или повышать риск заражения бактериальными инфекциями, такими как Staphylococcus aureus и Acinetobacter baumannii. И наоборот, некоторые бактерии, такие как Lactobacillus crispatus, могут препятствовать заражению ВПГ. Кроме того, ВПГ может взаимодействовать с бактериями и утяжелять течение пневмонии, связанной с искусственной вентиляцией легких, или способствовать формированию бактериальных инфекций мочевыводящих путей. Более того, бактериальный вагиноз связан с повышенным риском заражения ВПГ-2. В целом представленный обзор подчеркивает необходимость постоянного исследования вирусно-бактериальных взаимодействий, особенно роли ВПГ, для улучшения понимания патогенеза заболевания и улучшения терапевтических стратегий и тактики здравоохранения.
Полный текст
Открыть статью на сайте журналаОб авторах
Мохаммад Хассан Калантар Неестанаки
Аракский университет медицинских наук
Email: mohakani@yahoo.com
врач, Медицинский факультет
Иран, АракАида Мехдипур
Кумский университет медицинских наук
Автор, ответственный за переписку.
Email: mkalantar1998@gmail.com
доцент, специалист по детской стоматологии, Центр клеточных и молекулярных исследований
Иран, КумСписок литературы
- Almand E.A., Moore M.D., Jaykus L.A. Virus-Bacteria Interactions: An Emerging Topic in Human Infection. Viruses, 2017, vol. 9, no. 3: 58. doi: 10.3390/v9030058
- Bakaletz L.O. Viral-bacterial co-infections in the respiratory tract. Curr. Opin. Microbiol., 2017, vol. 35, no. 1, pp. 30–35. doi: 10.1016/j.mib.2016.11.003
- Birkmann A., Zimmermann H. HSV antivirals — current and future treatment options. Curr. Opin. Virol., 2016, vol. 18, no. 1, pp. 9–13. doi: 10.1016/j.coviro.2016.01.013
- Bosch A.A., Biesbroek G., Trzcinski K., Sanders E.A., Bogaert D. Viral and bacterial interactions in the upper respiratory tract. PLoS Pathog., 2013, vol. 9, no. 1: e1003057. doi: 10.1371/journal.ppat.1003057
- Bouza E., Giannella M., Torres M.V., Catalán P., Sánchez-Carrillo C., Hernandez R.I., Muñoz P. Herpes simplex virus: a marker of severity in bacterial ventilator-associated pneumonia. J. Crit. Care, 2011, vol. 26, no. 4: 432.e1–432.e6. doi: 10.1016/j.jcrc.2010.10.008
- Casto A.M., Roychoudhury P., Xie H., Selke S., Perchetti G.A., Wofford H., Huang M.L., Verjans G.M.G.M., Gottlieb G.S., Wald A., Jerome K.R., Koelle D.M., Johnston C., Greninger A.L. Large, Stable, Contemporary Interspecies Recombination Events in Circulating Human Herpes Simplex Viruses. J. Infect. Dis., 2020, vol. 221, no. 8, pp. 1271–1279. doi: 10.1093/infdis/jiz199
- Chang J.Y., Balch C., Puccio J., Oh H.S. A narrative review of alternative symptomatic treatments for herpes simplex virus. Viruses, 2023, vol. 15, no. 6: 1314. doi: 10.3390/v15061314
- Cherpes T.L., Melan M.A., Kant J.A., Cosentino L.A., Meyn L.A., Hillier S.L. Genital tract shedding of herpes simplex virus type 2 in women: effects of hormonal contraception, bacterial vaginosis, and vaginal group B Streptococcus colonization. Clin. Infect. Dis., 2005, vol. 40, no. 10, pp. 1422–1428. doi: 10.1086/429622
- Cole S. Herpes Simplex Virus: Epidemiology, Diagnosis, and Treatment. Nurs. Clin. North Am., 2020, vol. 55, no. 3, pp. 337–345. doi: 10.1016/j.cnur.2020.05.004
- Contreras A., Slots J. Herpesviruses in human periodontal disease. J. Periodontal Res., 2000, vol. 35, no. 1, pp. 3–16. doi: 10.1034/j.1600-0765.2000.035001003.x
- Dai L., DeFee M.R., Cao Y., Wen J., Wen X., Noverr M.C., Qin Z. Lipoteichoic acid (LTA) and lipopolysaccharides (LPS) from periodontal pathogenic bacteria facilitate oncogenic herpesvirus infection within primary oral cells. PLoS One, 2014, vol. 9, no. 6: e101326. doi: 10.1371/journal.pone.0101326
- Esber A., Vicetti Miguel R.D., Cherpes T.L., Klebanoff M.A., Gallo M.F., Turner A.N. Risk of Bacterial Vaginosis Among Women With Herpes Simplex Virus Type 2 Infection: A Systematic Review and Meta-analysis. J. Infect. Dis., 2015, vol. 212, no. 1, pp. 8–17. doi: 10.1093/infdis/jiv017
- Fatahzadeh M., Schwartz R.A. Human herpes simplex virus infections: epidemiology, pathogenesis, symptomatology, diagnosis, and management. J. Am. Acad. Dermatol., 2007, vol. 57, no. 5, pp. 737–763. doi: 10.1016/j.jaad.2007.06.027
- Freeman E.E., Weiss H.A., Glynn J.R., Cross P.L., Whitworth J.A., Hayes R.J. Herpes simplex virus 2 infection increases HIV acquisition in men and women: systematic review and meta-analysis of longitudinal studies. AIDS, 2006, vol. 20, no. 1, pp. 73–83. doi: 10.1097/01.aids.0000198081.09337.a7
- Groeger S.E., Meyle J. Epithelial barrier and oral bacterial infection. Periodontol. 2000, 2015, vol. 69, no. 1, pp. 46–67. doi: 10.1111/prd.12094
- Hedlund M., Aschenbrenner L.M., Jensen K., Larson J.L., Fang F. Sialidase-based anti-influenza virus therapy protects against secondary pneumococcal infection. J. Infect. Dis., 2010, vol. 201, no. 7, pp. 1007–1015. doi: 10.1086/651170
- Johnston C., Gottlieb S.L., Wald A. Status of vaccine research and development of vaccines for herpes simplex virus. Vaccine, 2016, vol. 34, no. 26, pp. 2948–2952. doi: 10.1016/j.vaccine.2015.12.076
- Kamma J.J., Contreras A., Slots J. Herpes viruses and periodontopathic bacteria in early-onset periodontitis. J. Clin. Periodontol., 2001, vol. 28, no. 9, pp. 879–885. doi: 10.1034/j.1600-051x.2001.028009879.x
- Kane M., Case L.K., Kopaskie K., Kozlova A., MacDearmid C., Chervonsky A.V., Golovkina T.V. Successful transmission of a retrovirus depends on the commensal microbiota. Science, 2011, vol. 334, no. 6053, pp. 245–249. doi: 10.1126/science.1210718
- Kash J.C., Taubenberger J.K. The role of viral, host, and secondary bacterial factors in influenza pathogenesis. Am. J. Pathol., 2015, vol. 185, no. 6, pp. 1528–1536. doi: 10.1016/j.ajpath.2014.08.030
- Kc R., Shukla S.D., Walters E.H., O’Toole R.F. Temporal upregulation of host surface receptors provides a window of opportunity for bacterial adhesion and disease. Microbiology (Reading), 2017, vol. 163, no. 4, pp. 421–430. doi: 10.1099/mic.0.000434
- Khosravi A., Mazmanian S.K. Disruption of the gut microbiome as a risk factor for microbial infections. Curr. Opin. Microbiol., 2013, vol. 16, no. 2, pp. 221–227. doi: 10.1016/j.mib.2013.03.009
- Kuss S.K., Best G.T., Etheredge C.A., Pruijssers A.J., Frierson J.M., Hooper L.V., Dermody T.S., Pfeiffer J.K. Intestinal microbiota promote enteric virus replication and systemic pathogenesis. Science, 2011, vol. 334, no. 6053, pp. 249–252. doi: 10.1126/science.1211057
- Looker K.J., Elmes J.A.R., Gottlieb S.L., Schiffer J.T., Vickerman P., Turner K.M.E., Boily M.C. Effect of HSV-2 infection on subsequent HIV acquisition: an updated systematic review and meta-analysis. Lancet Infect. Dis., 2017, vol. 17, no. 12, pp. 1303–1316. doi: 10.1016/S1473-3099(17)30405-X
- Lozupone C.A., Stombaugh J.I., Gordon J.I., Jansson J.K., Knight R. Diversity, stability and resilience of the human gut microbiota. Nature, 2012, vol. 489, no. 7415, pp. 220–230. doi: 10.1038/nature11550
- Manna S., Baindara P., Mandal S.M. Molecular pathogenesis of secondary bacterial infection associated to viral infections including SARS-CoV-2. J. Infect. Public Health, 2020, vol. 13, no. 10, pp. 1397–1404. doi: 10.1016/j.jiph.2020.07.003
- Meier A.F., Tobler K., Michaelsen K., Vogt B., Henckaerts E., Fraefel C. Herpes Simplex Virus 1 Coinfection Modifies Adeno-associated Virus Genome End Recombination. J. Virol., 2021, vol. 95, no. 13: e0048621. doi: 10.1128/JVI.00486-21
- Moore M.D., Jaykus L.A. Virus-Bacteria Interactions: Implications and Potential for the Applied and Agricultural Sciences. Viruses, 2018, vol. 10, no. 2: 61. doi: 10.3390/v10020061
- Mousavi E., Makvandi M., Teimoori A., Ataei A., Ghafari S., Samarbaf-Zadeh A. Antiviral effects of Lactobacillus crispatus against HSV-2 in mammalian cell lines. J. Chin. Med. Assoc., 2018, vol. 81, no. 3, pp. 262–267. doi: 10.1016/j.jcma.2017.07.010
- Neu U., Mainou B.A. Virus interactions with bacteria: Partners in the infectious dance. PLoS Pathog., 2020, vol. 16, no. 2: e1008234. doi: 10.1371/journal.ppat.1008234
- O’Toole R.F., Shukla S.D., Walters E.H. Does upregulated host cell receptor expression provide a link between bacterial adhesion and chronic respiratory disease? J. Transl. Med., 2016, vol. 14, no. 1: 304. doi: 10.1186/s12967-016-1063-x
- Oliveira de Almeida M., Carvalho R., Figueira Aburjaile F., Malcher Miranda F., Canário Cerqueira J., Brenig B., Ghosh P., Ramos R., Kato R.B., de Castro Soares S., Silva A., Azevedo V., Canário Viana M.V. Characterization of the first vaginal Lactobacillus crispatus genomes isolated in Brazil. PeerJ, 2021, vol. 9: e11079. doi: 10.7717/peerj.11079
- Petti S., Lodi G. The controversial natural history of oral herpes simplex virus type 1 infection. Oral Dis., 2019, vol. 25, no. 8, pp. 1850–1865. doi: 10.1111/odi.13234
- Rice S.A. Release of HSV-1 Cell-Free Virions: Mechanisms, Regulation, and Likely Role in Human-Human Transmission. Viruses, 2021, vol. 13, no. 12: 2395. doi: 10.3390/v13122395
- Robledo Gonzalez L., Tat R.P., Greaves J.C., Robinson C.M. Viral-Bacterial Interactions That Impact Viral Thermostability and Transmission. Viruses, 2023, vol. 15, no. 12: 2415. doi: 10.3390/v15122415
- Rodrigues P.M., Teixeira A.L., Kustner E.C., Medeiros R. Are herpes virus associated to aggressive periodontitis? A review of literature. J. Oral Maxillofac. Pathol., 2015, vol. 19, no. 3, pp. 348–355. doi: 10.4103/0973-029X.174621
- Rossi G.A., Fanous H., Colin A.A. Viral strategies predisposing to respiratory bacterial superinfections. Pediatr. Pulmonol., 2020, vol. 55, no. 4, pp. 1061–1073. doi: 10.1002/ppul.24699
- Said M.S., Tirthani E., Lesho E. Enterococcus Infections. StatPearls [Internet], 2024. URL: https://pubmed.ncbi.nlm.nih.gov/33620836
- Sajjan U., Wang Q., Zhao Y., Gruenert D.C., Hershenson M.B. Rhinovirus disrupts the barrier function of polarized airway epithelial cells. Am. J. Respir. Crit. Care Med., 2008, vol. 178, no. 12, pp. 1271–1281. doi: 10.1164/rccm.200801-136OC
- Slots J. Interactions between Herpesviruses and Bacteria in Human Periodontal Disease. In: Brogden K.A., Guthmiller J.M. (eds.) Polymicrobial Diseases. Washington (DC): ASM Press, 2002, Chapter 16, год обращения: 2025, ссылка: https://www.ncbi.nlm.nih.gov/books/NBK2484/
- Smith C.B., Golden C., Klauber M.R., Kanner R., Renzetti A. Interactions between viruses and bacteria in patients with chronic bronchitis. J. Infect. Dis., 1976, vol. 134, no. 6, pp. 552–561. doi: 10.1093/infdis/134.6.552
- Sommer F., Bäckhed F. The gut microbiota — masters of host development and physiology. Nat. Rev. Microbiol., 2013, vol. 11, no. 4, pp. 227–238. doi: 10.1038/nrmicro2974
- Steed A.L., Stappenbeck T.S. Role of viruses and bacteria-virus interactions in autoimmunity. Curr. Opin. Immunol., 2014, vol. 31, no. 1, pp. 102–107. doi: 10.1016/j.coi.2014.10.006
- Superti F., Longhi C., Di Biase A.M., Tinari A., Marchetti M., Pisani S., Gallinelli C., Chiarini F., Seganti L. Herpes simplex virus type 2 modulates the susceptibility of human bladder cells to uropathogenic bacteria. Med. Microbiol. Immunol., 2001, vol. 189, no. 4, pp. 201–208. doi: 10.1007/s004300100067
- Tugizov S. Virus-associated disruption of mucosal epithelial tight junctions and its role in viral transmission and spread. Tissue Barriers, 2021, vol. 9, no. 4: 1943274. doi: 10.1080/21688370.2021.1943274
- Van Der Sluijs K.F., van der Poll T., Lutter R., Juffermans N.P., Schultz M.J. Bench-to-bedside review: bacterial pneumonia with influenza—pathogenesis and clinical implications. Crit. Care, 2010, vol. 14, no. 2: 219. doi: 10.1186/cc8893
- Van Wagoner N., Qushair F., Johnston C. Genital herpes infection: progress and problems. Infect. Dis. Clin. North Am., 2023, vol. 37, no. 2, pp. 351–367. doi: 10.1016/j.idc.2023.02.011
- Verkaik N.J., Nguyen D.T., de Vogel C.P., Moll H.A., Verbrugh H.A., Jaddoe V.W., Hofman A., van Wamel W.J., van den Hoogen B.G., Buijs-Offerman R.M., Ludlow M., de Witte L., Osterhaus A.D., van Belkum A., de Swart R.L. Streptococcus pneumoniae exposure is associated with human metapneumovirus seroconversion and increased susceptibility to in vitro HMPV infection. Clin. Microbiol. Infect., 2011, vol. 17, no. 12, pp. 1840–1844. doi: 10.1111/j.1469-0691.2011.03480.x
- Wachsman M.B., Castilla V., de Ruiz Holgado A.P., de Torres R.A., Sesma F., Coto C.E. Enterocin CRL35 inhibits late stages of HSV-1 and HSV-2 replication in vitro. Antiviral Res., 2003, vol. 58, no. 1, pp. 17–24. doi: 10.1016/s0166-3542(02)00099-2
- Wei Y., Palacios Araya D., Palmer K.L. Enterococcus faecium: evolution, adaptation, pathogenesis and emerging therapeutics. Nat. Rev. Microbiol., 2024, vol. 22, no. 11, pp. 705–721. doi: 10.1038/s41579-024-01058-6
- Wertheim J.O., Hostager R., Ryu D., Merkel K., Angedakin S., Arandjelovic M., Ayimisin E.A., Babweteera F., Bessone M., Brun-Jeffery K.J., Dieguez P., Eckardt W., Fruth B., Herbinger I., Jones S., Kuehl H., Langergraber K.E., Lee K., Madinda N.F., Metzger S., Ormsby L.J., Robbins M.M., Sommer V., Stoinski T., Wessling E.G., Wittig R.M., Yuh Y.G., Leendertz F.H., Calvignac-Spencer S. Discovery of novel herpes simplexviruses in wild gorillas, bonobos, and chimpanzees supports zoonotic origin of HSV-2. Mol. Biol. Evol., 2021, vol. 38, no. 7, pp. 2818–2830. doi: 10.1093/molbev/msab072
- Whitley R.J. Herpes simplex virus infection. Semin. Pediatr. Infect. Dis., 2002, vol. 13, no. 1, pp. 6–11. doi: 10.1053/spid.2002.29752
- Wiertsema S.P., Chidlow G.R., Kirkham L.A., Corscadden K.J., Mowe E.N., Vijayasekaran S., Coates H.L., Harnett G.B., Richmond P.C. High detection rates of nucleic acids of a wide range of respiratory viruses in the nasopharynx and the middle ear of children with a history of recurrent acute otitis media. J. Med. Virol., 2011, vol. 83, no. 11, pp. 2008–2017. doi: 10.1002/jmv.22221
- Zhu S., Viejo-Borbolla A. Pathogenesis and virulence of herpes simplex virus. Virulence, 2021, vol. 12, no. 1, pp. 2670–2702. doi: 10.1080/21505594.2021.1982374
Дополнительные файлы
