Morphostructural damage to bacterial cells exposed to chlorine-containing derivatives of 5-,6-,7-aminoindoles assessed by scanning electron microscope
- 作者: Maseykina A.A.1, Stepanenko I.S.2, Platkova T.N.1, Kiryutina A.I.1, Malysheva V.S.1
-
隶属关系:
- National Research Mordovia State University
- Volgograd State Medical University
- 期: 卷 13, 编号 2 (2023)
- 页面: 243-256
- 栏目: ORIGINAL ARTICLES
- URL: https://bakhtiniada.ru/2220-7619/article/view/147821
- DOI: https://doi.org/10.15789/2220-7619-MDT-2047
- ID: 147821
如何引用文章
全文:
详细
The cell wall and membranes of Gram-positive and Gram-negative bacteria provide a physical, osmotic, and metabolic barrier between the internal contents of the bacterial cell and the external environment. Observation of changes in the integrity of the bacterial structure using a scanning electron microscope (SEM) can help elucidate the detailed mechanisms of cell death. The aim of the study was to analyze the morphological changes in microbial cells exposed to new compounds with antimicrobial activity — chlorine-containing derivatives of 5-,6-,7-aminoindoles using SEM. Methods. The present study was carried out using strains of Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli obtained from patients with nonspecific diseases of the respiratory, urinary tract, and intestines with different sensitivities to traditionally used antimicrobial drugs. Results. As a result, the studied chloromethyl-containing compounds of the indole series showed own biological activity, namely antimicrobial. Control cells were morphologically correct and typical. Statistical analysis of cell surface morphometry in control and experimental samples did not reveal significant changes in size after exposure to compounds with laboratory codes T1, T4, T7 and T12. At the same time, compared with control untreated cells of P. aeruginosa, S. aureus and E. coli, treatment with chlorine-substituted derivatives of 5-,6-,7-aminoindoles caused obvious morphological changes, which indicates a deteriorated state of the cell wall. Filamentous cells were observed in P. aeruginosa exposure to T7 and T12. The appearance of long filaments may be associated with the stress experienced by the cell after exposure to the compounds under study. It is believed that the formation of such filaments in bacteria under stress conditions results from defects in cell division, especially in the separation of daughter cells. There are data according to which, when DNA synthesis is suppressed, a bacterium changes its morphology, becomes longer, without reaching cell division. Treatment with T1, T7 and T12 resulted in degradation of the P. aeruginosa cell wall, while treatment with T4 caused the formation of pores on the cell surface. In this study, microscopy showed marked morphological changes in the cell walls of S. aureus, which led to deformation of the cell wall under the influence of T1, T4, T7 and T12. Treatment of E. coli T1, T4, T7 and T12 cells at a concentration of 500 μg/ml caused cell lysis, although normal cells were also found. The appearance of cellular debris around whole E. coli cells indicates membrane damage, which probably leads to a change in osmotic pressure. Conclusion. The results using SEM confirmed the data on the antimicrobial activity of chlorine-substituted derivatives of 5-,6-,7-aminoindoles.
作者简介
Alena Maseykina
National Research Mordovia State University
编辑信件的主要联系方式.
Email: minibat@mail.ru
PhD Student, Department of Immunology, Microbiology and Virology, Medical Institute
俄罗斯联邦, SaranskIrina Stepanenko
Volgograd State Medical University
Email: minibat@mail.ru
DSc (Medicine), Associate Professor, Head of the Department of Immunology, Microbiology and Virology
俄罗斯联邦, VolgogradTatyana Platkova
National Research Mordovia State University
Email: minibat@mail.ru
PhD Student, Department of Immunology, Microbiology and Virology, Medical Institute
俄罗斯联邦, SaranskAnastasiya Kiryutina
National Research Mordovia State University
Email: minibat@mail.ru
PhD Student, Department of Immunology, Microbiology and Virology, Medical Institute
俄罗斯联邦, SaranskVlada Malysheva
National Research Mordovia State University
Email: minibat@mail.ru
Student of the Medical Institute
俄罗斯联邦, Saransk参考
- Агарев А.Е. Распространенность ESKAPE-патогенов в отделении реанимации и интенсивной терапии новорожденных // Социально-гигиенический мониторинг здоровья населения: материалы к 24-й Всерос. науч.-практ. конф. с междунар. участием. Вып. 24. Под ред. В.А. Кирюшина. Рязань, 2020. С. 148–152. [Agarev A.E. Prevalence of ESKAPE-pathogens in neonatal intensive care units // Social and Hygienic Monitoring of Population Health: Proceedings for the 24th All-Russian Scientific and Practical Conference with International Participation. Iss. 24. Ed. by V.A. Kiryushin. Ryazan, 2020, pp. 148–152. (In Russ.)]
- Андреевская С.Г., Шевлягина Н.В., Псеунова Д.Р. Изменения морфологии S. aureus в условиях их культивирования в присутствии антибактериальных препаратов // Медицина. 2020. Т. 8, № 2. С. 31–49. [Andreevskaya S.G., Shevlyagina N.V., Pseunova J.R. Morphological сhanges of S. aureus cultivated in the presence of antibacterial drugs. Meditsina = Medicine, 2020, vol. 8, no. 2, pp. 31–49. (In Russ.)] doi: 10.29234/2308-9113-2020-8-2-31-49
- Методики клинических лабораторных исследований: справочное пособие. Том 3. Клиническая микробиология: бактериологические исследования; микологические исследования; паразитологические исследования; инфекционная иммунодиагностика; молекулярная диагностика инфекционных заболеваний / Под ред. В.В. Меньшикова. М.: Лабора, 2009. 880 с. [Methods of clinical laboratory tests: a reference manual. Vol. 3. Clinical microbiology: bacteriological studies; mycological studies; parasitological studies; infectious immunodiagnostics; molecular diagnosis of infectious diseases. Ed. by V.V. Menshikov. Moscow: Labora, 2009. 880 p. (In Russ.)]
- Мороз А.Ф., Анциферова Н.Г., Баскакова Н.В. Синегнойная инфекция. М.: Медицина, 1988. 256 с. [Moroz A.F., Antsiferova N.G., Baskakova N.V. Pseudomonas infection. Moscow: Meditsina, 1988. 256 p. (In Russ.)]
- Об унификации микробиологических (бактериологических) методов исследования, применяемых в клинико-диагностических лабораториях лечебно-профилактических учреждений: приказ МЗ СССР № 535 от 22.04.1985 г. М., 1985. 93 с. [Unification of microbiological (bacteriological) methods of investigation used in clinical diagnostic laboratories of medical and preventive institutions: Order of the Ministry of Health of the USSR No. 535. April 22, 1985. Moscow, 1985. 93 p. (In Russ.)]
- Патент № 2724605 Российская Федерация. МПК C07D 209/40 (2006.01), СПК C07D 209/40 (2020.02). Способ получения монохлорацетатов замещенных 5-,6-,7-аминоиндолов, обладающих противомикробным действием; № 2019125333, заявлено 2019.08.09, опубликовано 2020.06.25 / Степаненко И.С., Ямашкин С.А., Батаршева А.А., Сластников Е.Д. Патентообладатель: МГУ им. Н.П. Огарева. 9 с. [Patent No 2724605 Russian Federation, Int.Cl. C07D 209/40 (2006.01), C07D 209/40 (2020.02). Method of producing monochloroacetates of substituted 5-, 6-, 7-aminoindoles, having antimicrobial action; № 2019125333, application 2019.08.09; date of publication 2020.06.25 / Stepanenko I.S., Yamashkin S.А., Batarsheva A.А., Slastnikov E.D. Proprietors National Research Mordovia State University. 9 p.]
- Руководство по проведению доклинических исследований лекарственных средств. Часть первая. М.: Гриф и К, 2012. 944 с. [Guidelines for conducting preclinical studies of medicines. Part one. Moscow: Grif i K, 2012. 944 p. (In Russ.)]
- Сазыкин Ю.О., Навашин П.С. Антибиотики и оболочка бактериальной клетки. Итоги науки и техники. Сер. Биотехнология. М.: ВИНИТИ, 1991. Т. 31. 182 с. [Sazykin Yu.O., Navashin P.S. Antibiotics and bacterial cell envelope. Science and Technology Outcomes. Biotechnology Series. Mocsow: VINITI, 1991, vol. 31, 182 p. (In Russ.)]
- Супотницкий М.В. Механизмы развития резистентности к антибиотикам у бактерий // БИОпрепараты. Профилактика, диагностика, лечение. 2011. Т. 42, № 2. С. 4–13. [Supotnitskiy M.V. Mechanisms of antibiotic resistance in bacteria. BIOpreparaty. Profilaktika, diagnostika, lechenie = Biological Products. Prevention, Diagnostics, Treatment, 2011, vol. 42, no. 2, pp. 4–13. (In Russ.)]
- Armas F., Pacor S., Ferrari E., Guida F., Pertinhez T.A., Romani A.A., Scocchi M., Benincasa M. Design, antimicrobial activity and mechanism of action of Arg-rich ultra-short cationic lipopeptides. PLoS One, 2019, vol. 14, no. 2: e0212447. doi: 10.1371/journal.pone.0212447
- Bajpai V.K., Shukla S., Paek W.K., Lim J., Kumar P., Kumar P., Na M. Efficacy of (+)-Lariciresinol to control bacterial growth of Staphylococcus aureus and Escherichia coli O157:H7. Front. Microbiol., 2017, vol. 8: 804. doi: 10.3389/fmicb.2017.00804
- Barreto-Santamaría A., Curtidor H., Arévalo-Pinzón G., Herrera C., Suárez D., Pérez W.H., Patarroyo M.E. A New Synthetic Peptide Having Two Target of Antibacterial Action in E. coli ML35. Front. Microbiol., 2016, vol. 7: 2006. doi: 10.3389/fmicb.2016.02006
- Ciofu O., Hansen C.R., Høiby N. Respiratory bacterial infections in cystic fibrosis. Curr. Opin. Pulm. Med., 2013, vol. 19, no. 3, pp. 251–8. doi: 10.1097/MCP.0b013e32835f1afc
- Classics in infectious diseases. «On abscesses». Alexander Ogston (1844–1929). Rev. Infect. Dis., 1984, vol. 6, no. 1, pp. 122–128. doi: 10.1093/clinids/6.1.122
- Cui H., Zhang X., Zhou H., Zhao C., Lin L. Antimicrobial activity and mechanisms of Salvia sclarea essential oil. Bot. Stud., 2015, vol. 56, no. 1: 16. doi: 10.1186/s40529-015-0096-4
- Defez C., Fabbro-Peray P., Bouziges N., Gouby A., Mahamat A., Daurès J.P., Sotto A. Risk factors for multidrug-resistant Pseudomonas aeruginosa nosocomial infection. J. Hosp. Infect., 2004, vol. 57, no. 3, pp. 209–216. doi: 10.1016/j.jhin.2004.03.022
- Diggle S.P., Whiteley M. Microbe Profile: Pseudomonas aeruginosa: opportunistic pathogen and lab rat. Microbiology (Reading), 2020, vol. 166, no. 1, pp. 30–33. doi: 10.1099/mic.0.000860
- Dosunmu E.F., Chaudhari A.A., Bawage S., Bakeer M.K., Owen D.R., Singh S.R., Dennis V.A., Pillai S.R. Novel cationic peptide TP359 down-regulates the expression of outer membrane biogenesis genes in Pseudomonas aeruginosa: a potential TP359 anti-microbial mechanism. BMC Microbiol., 2016, vol. 16, no. 1: 192. doi: 10.1186/s12866-016-0808-2
- Dosunmu E., Chaudhari A.A., Singh S.R., Dennis V.A., Pillai S.R. Silver-coated carbon nanotubes downregulate the expression of Pseudomonas aeruginosa virulence genes: a potential mechanism for their antimicrobial effect. Int. J. Nanomedicine, 2015, vol. 10, pp. 5025–5034. doi: 10.2147/IJN.S85219
- Eckert R., Brady K.M., Greenberg E.P., Qi F., Yarbrough D.K., He J., McHardy I., Anderson M.H., Shi W. Enhancement of antimicrobial activity against pseudomonas aeruginosa by coadministration of G10KHc and tobramycin. Antimicrob. Agents Chemother., 2006, vol. 50, no. 11, pp. 3833–3838. doi: 10.1128/AAC.00509-06
- Greenwood D., O’Grady F. Scanning electron microscopy of Staphyloccus aureus exposed to some common anti-staphylococcal agents. J. Gen. Microbiol., 1972, vol. 70, no. 2, pp. 263–270. doi: 10.1099/00221287-70-2-263
- Hartmann M., Berditsch M., Hawecker J., Ardakani M.F., Gerthsen D., Ulrich A.S. Damage of the bacterial cell envelope by antimicrobial peptides gramicidin S and PGLa as revealed by transmission and scanning electron microscopy. Antimicrob. Agents Chemother., 2010, vol. 54, no. 8, pp. 3132–3142. doi: 10.1128/AAC.00124-10
- Jones T.H., Vail K.M., McMullen L.M. Filament formation by foodborne bacteria under sublethal stress. Int. J. Food Microbiol., 2013, vol. 165, no. 2, pp. 97–110. doi: 10.1016/j.ijfoodmicro.2013.05.001
- Kolle W., Hetsch H. Die experimentelle Bakteriologie und die Infektionskrankheiten mit besonderer Berücksichtigung der Immunitätslehre. Ein Lehrbuch für Studierende Ärzte und Medizinalbeamte. Urban & Schwarzenberg, Berlin 1906.
- Kong C., Chee C.F., Richter K., Thomas N., Abd Rahman N., Nathan S. Suppression of Staphylococcus aureus biofilm formation and virulence by a benzimidazole derivative, UM-C162. Sci. Rep., 2018, vol. 8, no. 1: 2758. doi: 10.1038/s41598-018-21141-2
- Leimbach A., Hacker J., Dobrindt U. E. coli as an all-rounder: the thin line between commensalism and pathogenicity. Curr. Top. Microbiol. Immunol., 2013, vol. 358, pp. 3–32. doi: 10.1007/82_2012_303
- Mahgoub S.A., Osman A.O., Sitohy M.Z. Bioactive proteins against pathogenic and spoilage bacteria. Functional Foods in Health and Disease, 2014, vol. 4, no. 10, pp. 451–462. doi: 10.31989/ffhd.v4i10.155
- Marcellini L., Giammatteo M., Aimola P., Mangoni M.L. Fluorescence and electron microscopy methods for exploring antimicrobial peptides mode(s) of action. Methods Mol. Biol., 2010, vol. 618, pp. 249–266. doi: 10.1007/978-1-60761-594-1_16
- Migula W. System der Bakterien: Handbuch der Morphologie, Entwicklungsgeschichte und Systematik der Bakterien. Fischer, 1900. 410 p.
- Mwangi J., Yin Y., Wang G., Yang M., Li Y., Zhang Z., Lai R. The antimicrobial peptide ZY4 combats multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii infection. Proc. Natl. Acad. Sci. USA, 2019, vol. 116, no. 52, pp. 26516–26522. doi: 10.1073/pnas.1909585117
- Schroeter J. Ueber einige durch Bacterien gebildete Pigmente. Beiträge zur Biologie der Pflanzen, 1872, vol. 1, no. 2, pp. 109–126.
- Sun H.Y., Fujitani S., Quintiliani R., Yu V.L. Pneumonia due to Pseudomonas aeruginosa: part II: antimicrobial resistance, pharmacodynamic concepts, and antibiotic therapy. Chest, 2011, vol. 139, no. 5, pp. 1172–1185. doi: 10.1378/chest.10-0167
- Rosenbach A.J.F. Mikro-organismen bei den Wund-infections-krankheiten des Menschen. Wiesbaden: JF Bergmann, 1884. 122 p.
- Rosenberger C.M., Gallo R.L., Finlay B.B. Interplay between antibacterial effectors: a macrophage antimicrobial peptide impairs intracellular Salmonella replication. Proc. Natl Acad. Sci. USA, 2004, vol. 101, no. 8, pp. 2422–2427. doi: 10.1073/pnas.0304455101
- Shulman S.T., Friedmann H.C., Sims R.H. Theodor Escherich: the first pediatric infectious diseases physician? Clin. Infect. Dis., 2007, vol. 45, no. 8, pp. 1025–1029. doi: 10.1086/521946
- Silhavy T.J., Kahne D., Walker S. The bacterial cell envelope. Cold Spring Harb. Perspect Biol., 2010, vol. 2, no. 5: a000414. doi: 10.1101/cshperspect.a000414
- Subbalakshmi C., Sitaram N. Mechanism of antimicrobial action of indolicidin. FEMS Microbiol. Lett., 1998, vol. 160, no. 1, pp. 91–96. doi: 10.1111/j.1574-6968.1998.tb12896.x
- Wu Y., Liang J., Rensing K., Chou T.M., Libera M. Extracellular matrix reorganization during cryo preparation for scanning electron microscope imaging of Staphylococcus aureus biofilms. Microsc. Microanal., 2014, vol. 20, no. 5, pp. 1348–1355. doi: 10.1017/S143192761401277X
- Xu Z.G., Gao Y., He J.G., Xu W.F., Jiang M., Jin H.S. Effects of azithromycin on Pseudomonas aeruginosa isolates from catheter-associated urinary tract infection. Exp. Ther. Med., 2015, vol. 9, no. 2, pp. 569–572. doi: 10.3892/etm.2014.2120
- Yamaki S., Kawai Y., Yamazaki K. Long filamentous state of Listeria monocytogenes induced by sublethal sodium chloride stress poses risk of rapid increase in colony-forming units. Food Control, 2021, vol. 124: 107860. doi: 10.1016/j.foodcont.2020.107860
补充文件
