Research of the distribution of distances between graphs with ordered vertices
- Autores: Rogov A.A.1, Moskin N.D.1, Voronov R.V.1, Kulakov K.A.1
-
Afiliações:
- Petrozavodsk State University
- Edição: Volume 74, Nº 3 (2024)
- Páginas: 58-66
- Seção: Community Informatics
- URL: https://bakhtiniada.ru/2079-0279/article/view/293509
- DOI: https://doi.org/10.14357/20790279240307
- EDN: https://elibrary.ru/NCISUO
- ID: 293509
Citar
Texto integral
Resumo
The article develops an approach based on a probabilistic model of generating objects with a distance between them. The distribution of distances between graphs with ordered vertices based on the maximum common is considered. One of the possible applications of such distances is the task of stylistic diagnostics of texts. Two algorithms for calculating distances on a set of graphs are presented. One of them consists of generating and exhaustively enumerating all pairs of trees, the second is heuristic. This is an approximate method of collecting statistics, where a given number of pairs of pseudo-random trees are iterated, since a complete search can take a long time. Using these algorithms, distance matrices between trees with a small and large number of vertices n were found. The experimental results showed that for small n the metric value does not exceed 0,5. For large n the average value of the metric grows slightly and stabilizes at the point 0,587. The hypothesis that the distribution corresponds to the normal law for n=100 was rejected using the Pearson test at a significance level of 0,1.
Palavras-chave
Sobre autores
Aleksandr Rogov
Petrozavodsk State University
Email: rogov@petrsu.ru
Head of Department, Doctor of Technical Sciences, Professor. Research interests: mathematical modeling, applied statistics, mathematical methods of pattern recognition, mathematical methods of analysis of literary texts.
Rússia, PetrozavodskNikolai Moskin
Petrozavodsk State University
Autor responsável pela correspondência
Email: moskin@petrsu.ru
Professor, Doctor of Technical Sciences, Associate Professor. Research interests: digital humanities, graph-theoretical models, data mining, computational linguistics, multimedia technologies, computer graphics.
Rússia, PetrozavodskRoman Voronov
Petrozavodsk State University
Email: rvoronov@petrsu.ru
Professor, Doctor of Technical Sciences, Associate Professor. Research interests: mathematical modeling, optimization problems, combinatorial graph problems, mathematical methods and models of local positioning systems for mobile objects.
Rússia, PetrozavodskKirill Kulakov
Petrozavodsk State University
Email: kulakov@cs.karelia.ru
Associate Professor, PhD in Physics and Mathematics, Associate Professor. Research interests: intelligent spaces, network technologies, mobile applications, electronic tourism, monitoring of industrial equipment, robotics, natural language analysis.
Rússia, PetrozavodskBibliografia
- Moskin N.D. Teoretiko-grafovye modeli, metody i programmnye sredstva intellektual’nogo analiza tekstovoj informacii na primere fol’klornyh i literaturnyh proizvedenij [Graph-theoretical models, methods and software for the intellectual analysis of textual information on the example of folklore and literary works]. D.Sc. Diss. Petrozavodsk. 2022. 370 p. (In Russ.)
- Varfolomeev A.G., Kirikov P.V., Rogov A.A. Veroyatnostnyj podhod k sravneniyu rasstoyanij mezhdu podmnozhestvami konechnogo mnozhestva [A probabilistic approach to comparing distances between subsets of a finite set]. Uchenye zapiski Petrozavodskogo gosudarstvennogo universiteta [Scientific notes of Petrozavodsk State University]. 2010. 8(113). Р. 83-88. (In Russ.)
- Sidorov Y.V., Kirikov P.V., Rogov A.A. Sravnenie dendrogramm s ravnym chislom vershin [Comparison of dendrograms with an equal number of vertices]. Uchenye zapiski Petrozavodskogo gosudarstvennogo universiteta [Scientific notes of Petrozavodsk State University]. 2011. 8(121). Р. 108-110. (In Russ.)
- Rogov A.A., Varfolomeyev A.G., Timonin A.O., Proenca K.A. A probabilistic approach to comparing the distances between partitions of a set. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes. 2018. 14(1): 14-19. doi: 10.21638/11701/spbu10.2018.102.
- Gladkij A.V. Sintaksicheskie struktury estestvennogo yazyka [Syntactic structures of natural language]. Moscow, LKI Publ. 2007. 152 p. (In Russ.)
- Sevbo I.P. Graficheskoe predstavlenie sintaksicheskih struktur i stilisticheskaya diagnostika [Graphic representation of syntactic structures and stylistic diagnostics]. Kiev: Naukova Dumka. 1981. 192 p. (In Russ.)
- Moskin N.D. Metrika dlya sravneniya grafov s uporyadochennymi vershinami na osnove maksimal’nogo obshchego podgrafa [Metric for comparing graphs with ordered vertices based on maximum common subgraph]. Prikladnaya diskretnaya matematika [Applied discrete mathematics]. 2021. 52. Р. 105-113. doi: 10.17223/20710410/52/7. (In Russ.)
- Prüfer H. Neuer Beweis eines Satzes über Permutationen (нем.) // Archiv für Mathematik und Physik. 1918. 27: 742–744.
- Bron C., Kerbosh J. Algorithm 457 – Finding all cliques of an undirected graph // Communications of the ACM. 1973. 16. Р. 575–577.
Arquivos suplementares
