Clinical center type in predicting patient enrollment

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Background. According to the literature, the final decision for the selection of clinical centers is made on the basis of subjective assessments – personal judgment and assumptions of the working team, which, as a rule, is associated to the lack of objective criteria for assessing a clinical center. The clinical site is responsible for both patient recruitment, in accordance with all protocol criteria and regulatory requirements, and for completing the patient recruitment agreed upon during the patient search phase providing successful achievement of targeted patient recruitment. One of the important conditions for successful patient recruitment is the high-quality selection of clinical centers at the feasibility stage, which requires objective tools to select clinical centers that will recruit patients in accordance with all protocol requirements and achieve the target goals of the clinical trial.

Objective. Searching for objective criteria for evaluating clinical centers providing targeted recruitment of patients.

Methods. Data obtained from 70 clinical centers located in 59 cities of Russia, Belarus and Ukraine (RUB region) generated in 4 clinical studies involving 622 patients were retrospectively analyzed. All 4 studies were successful in patient recruitment. The following values were calculated using the descriptive statistics method: mean, error of mean, standard deviation and coefficient of variation.

Results. Objective criteria for the selection of clinical centers (parameters and indicators) that make it possible to predict the upcoming enrollment of patients in the clinical center have been identified. Based on the grouping of parameters and indicators, 4 types of clinical centers were identified: type 1 – silent, type 2 – low-recruiting, type 3 – medium-recruiting and type 4 – high-recruiting, statistically significantly different in objective parameters of primary response time in days: 31.19±5 .27, 21.43±3.26, 23.64±4.04, 12.7±0.79, respectively, and according to objective indicators “Ratio of Primary Response Time in days/Estimated Patient Enrollment”: 4.56±1, 03, 2.42±0.43, 1.94±0.3, 1.345±0.099, respectively.

Conclusion. For the first time, objective criteria (parameters and indicators) for the selection of clinical centers have been proposed, allowing an objective assessment of the upcoming recruitment at the selected site. For the first time, types of clinical centers have been proposed based on selected objective criteria.

About the authors

Svyatoslav S. Milovanov

PE Milovanov Svyatoslav Sergeevich

Author for correspondence.
Email: milovanovss@gmail.com
ORCID iD: 0000-0001-9843-6096
SPIN-code: 8900-3380
Scopus Author ID: 58575569000
ResearcherId: ACK-8622-2022

Cand. Sci. (Med.), Independent researcher

Russian Federation, Moscow

References

  1. Kibby M. Patient recruitment feasibility. Appl Clin Trails. 2011;20(6):80–7.
  2. Redeker С., Hanson D. Optimizing Patient Recruitment and Engagement Strategies June 9, 2022. URL: https://www.appliedclinicaltrialsonline.com/view/optimizing-patient-recruitment-and-engagement-strategies (last access: 01.08.2022).
  3. Fogel D.B. Factors associated with clinical trials that fail and opportunities for improving the likelihood of success: A review. Contempor ClinTrial Communicat. 2018;11:156–64.
  4. Lievre M. Premature discontinuation of clinical trial for reasons not related to efficacy, safety, or feasibility Commentary: Early discontinuation violates Helsinki principles. BMJ. 2001;322(7286):603–6. doi: 10.1136/bmj.322.7286.603.
  5. McDonald A.M., Knight R.C., Campbell M.K., et al. What influences recruitment to randomised controlled trials? A review of trials funded by two UK funding agencies. Trials. 2006;7(9). doi: 10.1186/1745-6215-7-9.
  6. Levett K.M., Roberts C.L., Simpson J.M., Morris J.M. Site-specific predictors of successful recruitment to a perinatal clinical trial. Clin Trials. 2014;11:584–89.
  7. Bieganek C., Aliferis C., Ma S. Prediction of clinical trial enrollment rates. PLoS One. 2022;17(2):e0263193. doi: 10.1371/journal.pone.0263193.
  8. Prediction of Recruitment Potential of Participating Centers in Clinical Trials by Standardized Translation of Selection Criteria and Queries From DRG Database (Pred-Inclus). URL: https://clinicaltrials.gov/ct2/show/NCT03019068 (last access: 01.10.2022).
  9. Gross D. A research agenda for understanding participation in clinical research. Res Nurs Health. 2006;29(3):172–75. Doi: 10.1002/ nur.20135.
  10. Бестужев-Лада И.В. Впереди XXI век: перспективы, прогнозы, футурологии. Антология современной классической прогностики 1959–1999. М., 2000. 480 с. [Bestuzhev-Lada, I.V. Ahead of the XXI century: prospects, forecasts, futurology. Anthology of modern classical prognostication 1959–1999. M., 2000, 480 p. (In Russ.)].
  11. Саватеев А.В., Белоцерковский М.В., Мосчиц-ка К., Палумбо Д. Оценка физибильности как краеугольный камень успешного клинического исследования. Качественная клиническая практика. 2013;2:37–46. [Savateev A.V., Belotserkovsky M.V., Moscicka K., Palumbo D. Physical assessment as a cornerstone of a successful clinical trial. Qualit Clin Pract. 2013;2:37–46. (In Russ.)].
  12. van den Bora R.M., Grobbeea D.E., Oostermana B.J., et al. Predicting enrollment performance of investigational centers in phase III multi-center clinical trials. Contempor. Clin Trial Communicat. 2017;7:208–16.
  13. Getz K., Predicting successful site performance, Appl Clin Trials. 2011;20(11). URL: http://www.appliedclinicaltrialsonline.com/predicting-successful-siteperformance (last access: 02.07.2022).
  14. Dane A., Ashraf S., Timmis J., et al. Barriers to patient enrolment in phase III cancer clinical trials: interviews with clinicians and pharmaceutical industry representatives. BMJ. Open 2022;12:e055165. doi: 10.1136/bmjopen-2021-055165.
  15. Yang E., O’Donovan C., Phillips J., et al. Quantifying and visualizing site performance in clinical trials. Contempor Clin Trial Communicat. 2018;9:108–14. doi: 10.1016/j.conctc.2018. 01.005.
  16. Haidich A.-B. Late-Starter Sites in Randomized Controlled Trials. J Clin Epidemiol. 2003;56(2003):408–15.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. Time of first response (initial response), days

Download (39KB)

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».