Diabetic neuropathy: pathophysiological mechanisms and metabolic therapy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The presented scientific and analytical article discusses the modern scientific literature data on structural and physiological changes in nervous tissue in patients with diabetes mellitus. A complex of mechanisms leading to disruption of antioxidant protection; changes in protein structure and activity of enzyme systems; leading to hypoxia; the development of axonal degeneration and demyelenation of nerve fibers; has been analyzed. The multicomponent nature of metabolic disorders has been identified as the main problem that needs to be solved; which dictates the need to find and use means with not just precise; but also complex effects. Analysis of data on the presentation of domestic drugs with complex effects on the Russian pharmaceutical market drew our attention to a drug containing inosine +nicotinamide+riboflavin+succinic acid.. Pharmacokinetics of Cytoflavin allows it to simultaneously influence several pathophysiological mechanisms; providing to predict the complex effect on metabolic processes in nervous tissue. Currently; one of the most promising areas for using this drug is in the treatment of diabetic neuropathy.

About the authors

Irina A. Kurnikova

RUDN University

Author for correspondence.
Email: curnikova@yandex.ru
ORCID iD: 0000-0002-5712-9679
SPIN-code: 8579-9455

Dr. Sci. (Med.), Professor, Professor at the Department of Hospital Therapy with Courses in Endocrinology

Russian Federation, Moscow

References

  1. Алгоритмы специализированной медицинской помощи больным сахарным диабетом. Под ред. И.И. Дедова; М.В. Шестаковой; А.Ю. Майорова. 11-й выпуск. М.; 2023. [Algorithms for specialized medical care for patients with diabetes mellitus. Ed. I.I. Dedova; M.V. Shestakova; A.Yu. Mayorova. 11th issue. M.; 2023. (In Russ.)]. doi: 10.14341/DM13042.
  2. Brown G.K. Glucose transporters: Structure; function; and consequences of deficiency. J Inherited Metab. Dis. 2000;23(3):237–46.
  3. Brosius F.C.; Heilig C.W. Glucose transporters in diabetic nephropathy. Pediatr Nephrol. 2005;20:447–51. doi: 10.1007/s00467-004-1748-x.
  4. Thorens B.; Mueckler M. Glucose transporters in the 21st Century. Am J Physiol. 2010. doi: 10.1152/ajpendo.00712.2009.
  5. Wasik A.A.; Lehtonen S. () Glucose Transporters in Diabetic Kidney Disease—Friends or Foes? Front Endocrinol. 2018;9:155. doi: 10.3389/fendo.2018.00155.
  6. Jaldin-Fincati J.R.; Pavarotti M.; Frendo-Cumbo S.; et al. Update on GLUT4 vesicle traffic: a cornerstone of insulin action. Trends Endocrinol Metab. 2017;28:597–611. doi: 10.1016/j.tem.2017.05.002.
  7. Yang C.; Zhao X.; An X.; et al. Axonal transport deficits in the pathogenesis of diabetic peripheral neuropathy. Front Endocrinol (Lausanne). 2023;14:1136796. doi: 10.3389/fendo.2023.1136796.
  8. O’Brien P.D.; Hinder L.M.; Sakowski S.A.; Feldman E.L. ER stress in diabetic peripheral neuropathy: a new therapeutic target. Antioxid Redox. Signal. 2014;21:621–33.
  9. Guillaud L.; El-Agamy S.E.; Otsuki M.; Terenzio M. Anterograde axonal transport in neuronal homeostasis and disease. Front Mol Neurosci. 2020;13:556175. doi: 10.3389/fnmol.2020.556175.
  10. Feldman E.L.; Nave K.-A.; Jensen T.S.; Bennett D.L. New horizons in diabetic neuropathy: mechanisms; bioenergetics; and pain. Neuron. 2017;93(6):1296–313. doi: 10.1016/j.neuron.2017.02.00.
  11. Fujita Y.; Murakami T.; Nakamura A. Recent Advances in Biomarkers and Regenerative Medicine for Diabetic Neuropathy. Int J Mol Sci. 2021;22(5):2301. doi: 10.3390/ijms22052301.
  12. Sharma J.K.; Rohatgi A.; Sharma D. Diabetic autonomic neuropathy: a clinical update. J R Coll Physic Edinb. 2020;50(3):269–73. doi: 10.4997/JRCPE.2020.310.
  13. Танашян М.М.; Антонова К.В.; Раскуражев А.А. Диабетическая полинейропатия: патогенез; клиника; подходы к персонифицированной коррекции. Медицинский совет. 2017;17:72–80. [Tanashyan M.M.; Antonova K.V.; Raskurazhev A.A. Diabetic polyneuropathy: pathogenesis; clinical picture; approaches to personalized correction. Medical advice. 2017;17:72–80. (In Russ.)].
  14. Ang L.; Jaiswal M.; Martin C.; Pop-Busui R. Glucose control and diabetic neuropathy: lessons from recent large clinical trials. Curr Diab Rep. 2014;14(9):528. doi: 10.1007/s11892-014-0528-7.
  15. Callaghan B.C.; Gallagher G.; Fridman V.; Feldman E.L. Diabetic neuropathy: what does the future hold? Diabetol. 2020;63(5):891–97. doi: 10.1007/s00125-020-05085-9.
  16. Pop-Busui R.; Boulton A.J.M.; Feldman E.L.; et al. Diabetic neuropathy: A position statement by the American diabetes association. Diab Care. 2017;40:136–54. doi: 10.2337/dc16-2042.
  17. Orlando G.; Balducci S.; Bazzucchi I.; et al. Neuromuscular dysfunction in type 2 diabetes: underlying mechanisms and effect of resistance training. Diab Metab Res. Rev. 2016;32(1):40–50. doi: 10.1002/dmrr.2658.
  18. Gholami F.; Nikookheslat S.; Salekzamani Y.; et al. Effect of aerobic training on nerve conduction in men with type 2 diabetes and peripheral neuropathy: A randomized controlled trial. Neurophysiol Clin. 2018;48(4):195–202. doi: 10.1016/j.neucli.2018.03.001.
  19. Massie R.; Mauermann M.L.; Staff N.P.; et al. Diabetic cervical radiculoplexus neuropathy: a distinct syndrome expanding the spectrum of diabetic radiculoplexus neuropathies. Brain. 2012;135:3074–88.
  20. Kempler P.; Boulton A.J. Screening; diagnosis and management of diabetic sensorimotor polyneuropathy in clinical practice: International expert consensus recommendations. Diab Res Clin Pract. 2022;186:109063. doi: 10.1016/j.diabres.2021.109063.
  21. Ziegler D.; Tesfaye S.; Spallone V.; et al. Screening; diagnosis and management of diabetic sensorimotor polyneuropathy in clinical practice: International expert consensus recommendations. Diab Res Clin Pract. 2022;186:109063. doi: 10.1016/j.diabres.2021.109063.
  22. Ziegler D.; Papanas N.; Schnell O.; et al. Current concepts in the management of diabetic polyneuropathy. J Diab Investig. 2021;12(4):464–75. doi: 10.1111/jdi.13401.
  23. Serhiyenko V.A.; Serhiyenko A.A. Cardiac autonomic neuropathy: Risk factors; diagnosis and treatment. World J Diab. 2018;9(1):1–24. doi: 10.4239/wjd.v9.i1.1.
  24. Bonhof G.J.; Herder C.; Ziegler D. Diagnostic Tools; Biomarkers; and Treatments in Diabetic polyneuropathy and Cardiovascular Autonomic Neuropathy. Curr Diab Rev. 2022;18(5):e120421192781. doi: 10.2174/1573399817666210412123740.
  25. Pop-Busui R.; Stevens M. Autonomic neuropathy in diabetes. In Therapy for Diabetes Mellitus and Related Disorders. 6th ed. Umpierrez GE; Ed. Alexandria; VA; American Diabetes Association; 2014. P. 834–63.
  26. Marathe C.S.; Jones K.L.; Wu T.; et al. Gastrointestinal autonomic neuropathy in diabetes. Auton Neurosci. 2020;229:102718. doi: 10.1016/j.autneu.2020.102718.
  27. Meldgaard T.; Olesen S.S.; Farmer A.D.; et al. Diabetic Enteropathy: From Molecule to Mechanism-Based Treatment. J Diab Res. 2018;2018:3827301. doi: 10.1155/2018/3827301.
  28. Tornblom H. Treatment of gastrointestinal autonomic neuropathy. Diabetol. 2016;59(3):409–13. doi: 10.1007/s00125-015-3828-9.
  29. Van Cauwenberghe J.; et al. Prevalence of and risk factors for sexual dysfunctions in adults with type 1 or type 2 diabetes: results from Diabetes MILES‐Flanders. Diab Med. 2022;39(1):e14676.
  30. Курбатов Д.Г.; Шварц Я.Г.; Роживанов Р.В. и др. Лечение нейрогенной эректильной дисфункции у пациентов с сахарным диабетом I типа. Вестник урологии. 2017;1.
  31. Prevention and Management Strategies for Diabetic Neuropathy. Smith S.; Normahani P.; Lane T.; et al. Life (Basel). 2022;12(8):1185. doi: 10.3390/life12081185.
  32. Nadro B.; Lorincz H.; Molnar A.; et al. Effects of alpha-lipoic acid treatment on serum progranulin levels and inflammatory markers in diabetic neuropathy. J Int Med Res. 2021;49(5):3000605211012213. doi: 10.1177/03000605211012213.
  33. Hsieh R.Y.; Huang I.C.; Chen C.; Sung J.Y. Effects of Oral Alpha-Lipoic Acid Treatment on Diabetic Polyneuropathy: A Meta-Analysis and Systematic Review. Nutrients. 2023;15(16):3634. doi: 10.3390/nu15163634.
  34. Мазин П.В.; Шешунов И.В.; Мазина Н.К. Метааналитическая оценка клинической эффективности цитофлавина при неврологических заболеваниях. Журнал неврологии и психиатрии им. С.С. Корсакова. 2017;117(3):28–39. [Mazin P.V.; Sheshunov I.V.; Mazina N.K. Meta-analytic assessment of the clinical effectiveness of cytoflavin in neurological diseases. Journal of Neurology and Psychiatry. S.S. Korsakov. 2017;117(3):28–39. (In Russ.)]. doi: 10.17116/jnevro20171173128-39.
  35. Камчатнов П.Р.; Чугунов А.В.; Осмаева З.Х. Цитофлавин: возможности метаболической терапии у больных с дисциркуляторной энцефалопатией. Доктор.Ру. 2019;1(156):14–9. [Kamchatnov P.R.; Chugunov A.V.; Osmaeva Z.Kh. Cytoflavin: possibilities of metabolic therapy in patients with dyscirculatory encephalopathy. Doctor.Ru. 2019;1(156):14–9. (In Russ.)]. doi: 10.31550/1727-2378-2019-156-1-14-19.
  36. Горшков И.П.; Волынкина А.П.; Золоедов В.И. Опыт применения цитофлавина в лечении больных сахарным диабетом 2-го типа с диабетической полинейропатией. Проблемы эндокринологии. 2012;4–2. [Gorshkov I.P.; Volynkina A.P.; Zoloedov V.I. Experience with the use of cytoflavin in the treatment of patients with type 2 diabetes mellitus and diabetic polyneuropathy. Problems of endocrinology. 2012;4–2. (In Russ.)].
  37. Строков И.А.; Трахтенберг Я.А.; Коваленко А.Л. Эффективность и безопасность применения цитофлавина в терапии диабетической полинейропатии: результаты многоцентрового двойного слепого плацебо-контролируемого рандомизированного исследования ЦИЛИНДР: результаты многоцентрового двойного слепого плацебо-контролируемого рандомизированного цилиндрического исследования. Журнал неврологии и психиатрии им. С.С. Корсакова. 2023;123(5):100–7. [Strokov I.A.; Trakhtenberg Ya.A.; Kovalenko A.L. Efficacy and safety of cytoflavin in the treatment of diabetic polyneuropathy: results of a multicenter double-blind; placebo-controlled; randomized CYLINDER study: results of a multicenter; double-blind; placebo-controlled; randomized cylinder study. Journal of Neurology and Psychiatry. S.S. Korsakov. 2023;123(5):100–7. (In Russ.)]. doi: 10.17116/jnevro2023123051100.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. Pathophysiology of development of endoneural disorders

Download (292KB)

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».