Predicting the Results of the R. Cattell Test Based on the Social Network User Profiles

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Digital footprints of users in the social network and the results of passing the 16-factor R. Cattell test. The method consists in applying statistical methods and relevant machine learning algorithms to personal data on the user's page. The main results of the experiment are the identification of a significant correlation between the factors evaluated by the R. Cattell test and digital footprints, and the construction of predictive models. The best results among the machine learning methods for predicting the results of the R. Cattell test were shown by gradient boosting algorithms with the maximum value of the F1-micro metric of 0.606, which was achieved on the factor “emotional sensitivity” (factor I). The practical significance of the work lies in the development of a tool for automatically predicting the results of the R. Cattell test based on the user's digital footprints. The theoretical significance lies in the development of a method for the automated evaluation of the expression of personality traits of social network users on their digital footprints.

作者简介

Grigorii Ryazantcev

Saint Petersburg State University

编辑信件的主要联系方式.
Email: st088141@student.spbu.ru

Student

俄罗斯联邦, Saint Petersburg

Valerii Oliseenko

St. Petersburg Federal Research Center of the Russian Academy of Sciences

Email: vdo@dscs.pro

Junior researcher

俄罗斯联邦, Saint Petersburg

Maxim Abramov

St. Petersburg Federal Research Center of the Russian Academy of Sciences

Email: mva@dscs.pro

PhD, Senior researcher

俄罗斯联邦, Saint Petersburg

Tatiana Tulupyeva

St. Petersburg Federal Research Center of the Russian Academy of Sciences; North-West Institute of Management Branch of the Russian Presidential Academy of National Economy and Public Administration

Email: tvt@dscs.pro

PhD, Аssistant professor; Senior researcher

俄罗斯联邦, Saint Petersburg; Saint Petersburg

参考

  1. Kern M.L., Friedman H.S. Personality and Pathways of Influence on Physical Health. Social and Personality Psychology Compass. 2011; 5(1):76-87. doi: 10.1111/2Fj.17519004.2010.00331.x.
  2. Luo J., Zhang B., Estabrook R., Graham E. K., Driver C. C., Schalet B. D., Turiano N. A., Spiro A., Mroczek, D. K. Personality and health: Disentangling their between-person and within-person relationship in three longitudinal studies. Journal of Personality and Social Psychology. 2020; 122(3): 493-522. doi: 10.1037/pspp0000399.
  3. Luo J., Zhang B., Cao M., Roberts, B.W. The Stressful Personality: A Meta-Analytical Review of the Relation Between Personality and Stress. Personality and Social Psychology Review. 2022; 27(2):128-194. doi: 10.1177/10888683221104002.
  4. Ho S., Wong A. The role of customer personality in premium banking service. Journal of Financial Services Marketing. 2023; 28(2):285-305. doi: 10.1057/s41264-022-00150-3.
  5. Agyei J., Sun S., Abrokwah E., Penney E.K., Ofori-Boafo R. Mobile Banking Adoption: Examining the Role of Personality Traits. SAGE Open. 2020; 10(2). doi: 10.1177/2158244020932918.
  6. Netzer O., Lemaire A., Herzenstein M. When Words Sweat: Identifying Signals for Loan Default in the Text of Loan Applications. Journal of Marketing Research. 2019; 56(6):960-980. doi: 10.1177/0022243719852959.
  7. Wu W., Chen L., He L. Using personality to adjust diversity in recommender systems, HT 2013 Proceedings of the 24th ACM Conference on Hypertext and Social Media, 2013, pp. 225-229. doi: 10.1145/2481492.2481521.
  8. Smith, T.A. The role of customer personality in satisfaction, attitude-to-brand and loyalty in mobile services. Spanish Journal of Marketing ESIC. 2020; 24(2):155-175. doi: 10.1108/SJME-06-2019-0036.
  9. Camoiras-Rodriguez Z., Varela C. The influence of consumer personality traits on mobile shopping intention. Spanish Journal of Marketing ESIC. 2020; 24(3):331-353. doi: 10.1108/SJME-02-2020-0029.
  10. Abramov M., Tulupyev A., Suleymanov A. Analysis of users’ protection from socio-engineering attacks: social graph creation based on information from social network websites. Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2018; 18(2):313-321. doi: 10.17586/2226-1494-2018-18-2-313-321.
  11. Tulupyeva T., Abramov M., Tulupyev А. Socioengineering attacks: social networks and user security assessments. Izdatel'stvo: Sankt-Peterburgskij gosudarstvennyj universitet ajerokosmicheskogo priborostroenija, Saint-Petersburg. 2018; 266 p. ISBN 978-5-8088-1317-5. (in Russ).
  12. Kudinov S. I., Kudinov S. S. Psychodiagnostics of personality. Izdatel'stvo: Rossijskij universitet druzhby narodov (RUDN). 2018; 232 p. ISBN: 978-5-209-08188-3 (in Russ).
  13. Bushmelev F., Khlobystova A., Abramov M., Livshits L. Deep Machine Learning Techniques in the Problem of Estimating the Expression of Psychological Characteristics of a Social Media User, Artificial Intelligence in Models, Methods and Applications. AIES 2022. Studies in Systems, Decision and Control. 2023; 457:315-324. doi: 10.1007/978-3-031-22938-1_22.
  14. Frolova M.S., Korepanova A.A., Abramov M.V. Assessing the Degree of the Social Media User's Openness Using an Expert Model Based on the Bayesian Network. 2021 XXIV International Conference on Soft Computing and Measurements (SCM). 2021; p. 52-55. doi: 10.1109/SCM52931.2021.9507111.
  15. Ignatiev N., Smirnov I., Stankevich M. Predicting Depression with Text, Image, and Profile Data from Social Media. International Conference on Pattern Recognition Applications and Methods. 2022; p. 753-760. doi: 10.5220/0010986100003122.
  16. Choi T., Sung Y., Lee J., Choi S. Get behind my selfies: The Big Five traits and social networking behaviors through selfies. Personality and Individual Differences. 2017; 109:98-101. doi: 10.1016/j.paid.2016.12.057.
  17. Kosinski M., Stillwell D., Graepel T. Private traits and attributes are predictable from digital records of human behavior. Proceedings of the National Academy of Sciences. 2013; 110(15):5802-5805. doi: 10.1073/pnas.1218772110.
  18. Li L., Li A., Hao B., Guan Z., Zhu T. Predicting Active Users' Personality Based on Micro-Blogging Behaviors. PLOS ONE. 2014; 9(1):1-11. doi: 10.1371/journal.pone.0084997.
  19. Raygorodsky D.Y. Practical psychodiagnostics. Methods and tests. Tutorial, Samara: Izdatel'skij dom «BAHRAHM». 2001; p.192-239, ISBN 5-89570-005-5 (in Russ).
  20. Matz S., Chan Y.W.F., Kosinski M. Models of Personality. Emotions and Personality in Personalized Services. 2016; p. 35-54. doi: 10.1007/978-3-319-31413-6_3.
  21. Singh S., Farley S., Donahue J. Grandiosity on display: Social media behaviors and dimensions of narcissism. Personality and Individual Differences. 2018; 134:308-313. doi: 10.1016/j.paid.2018.06.039.
  22. Chow T., Wan H. Is there any ‘Facebook Depression’? Exploring the moderating roles of neuroticism, Facebook social comparison and envy. Personality and Individual Differences. 2017; 119:277-282. doi: 10.1016/j.paid.2017.07.032.
  23. Souri A., Hosseinpour S., Rahmani A.M. Personality classification based on profiles of social networks’ users and the five-factor model of personality. Human-centric Computing and Information Science. 2018; 8(1). doi: 10.1186/s13673-018-0147-4.
  24. Titov S., Mararitsa L. Full-scale Personality Prediction on VKontakte Social Network and its Applications, 25th Conference of Open Innovations Association (FRUCT). 2019; p. 317-323. doi: 10.23919/FRUCT48121.2019.8981513.
  25. Oliseenko V.D., Abramov M.V. Predicting the results of the 16-factor R. Cattell test based on the analysis of text posts of social network users. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2023; 23(2):279–288. doi: 10.17586/2226-1494-2023-23-2-279-288.
  26. Grandini M., Bagli E., Visani G. Metrics for Multi-Class Classification: an Overview, 2020. doi: 10.48550/arXiv.2008.05756.
  27. Tanha J., Abdi Y., Samadi N. Boosting methods for multiclass imbalanced data classification: an experimental review. Journal of Big Data. 2020; 7(1). doi: 10.1186/s40537020-00349-y.

补充文件

附件文件
动作
1. JATS XML


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».