№ 2 (2024)

Мұқаба

Бүкіл шығарылым

Decision Support Systems

Patterns of human-machine collaboration in decision support systems

Smirnov A., Levashova T.

Аннотация

An overview of collaboration patterns is given. Common concepts are identified that collab oration pattern models, meta-models of pattern modelling languages, and ontology pattern models use in the pattern representations. A conceptual model for the usage of human-machine collaboration patterns in decision support is proposed. Options for the model usage are considered.

ARTIFICIAL INTELLIGENCE AND DECISION MAKING. 2024;(2):3-17
pages 3-17 views

Medical decision support system for early diagnosis of liver disease

Serobabov A., Denisova L.

Аннотация

The paper considers a decision support system for the diagnosis of liver disease based on the data of medical examinations of patients. A software-algorithmic complex for decision-making to determine the stage of the patient's disease has been developed. Significant parameters characterizing the stage of liver disease have been determined using aggregate estimates of correlation dependencies of parameters and data of expert physicians. Classifiers based on fuzzy logical inference for determining the stage of liver disease are proposed. Studies confirming the effectiveness of the proposed decision support system for medical diagnosis have been carried out.

ARTIFICIAL INTELLIGENCE AND DECISION MAKING. 2024;(2):18-36
pages 18-36 views

AI-enabled Systems

The possibility to use artificial intelligence methods in predicting the outcomes of neurosurgical operations

Zabezhailo M., Gavrjushin A.

Аннотация

Some abilities of artificial intelligence methods application in predicting the outcomes of neurosurgical operations are discussed. The presented approach is based on the analysis of causal similarity as a basis for generation cause-and-effect dependencies initially hidden in accumulated empirical data. The mathematical formalization of this heuristic is constructed by clarifying similarity as a binary algebraic operation used to compare descriptions of precedents and search in them for approximate representation of the causality of target effects – the outcomes of neurosurgical operations. The possibilities of the presented approach are illustrated by the results of an intelligent analysis of real empirical data covering a series of neurosurgical operations of stem tumors performed in 2005-2018 at the N.N. Burdenko National Medical Research Center for Neurosurgery.

ARTIFICIAL INTELLIGENCE AND DECISION MAKING. 2024;(2):37-52
pages 37-52 views

Optimization of the operation of an oil refining plant using a neural network forecast of its economic efficiency

Nuzhny A., Levchenko E., Usmanov M.

Аннотация

The problem of optimal control of an oil refining unit is considered. The proposed approach is based on the construction of a predictive model predicting the economic efficiency of the installation. This model is built by training a recurrent neural network. The effectiveness of the proposed approach is shown by the example of the installation of hydrocracking of tar. Optimization of the forecast econ- omy of the installation according to its control parameters allows us to obtain their optimal values that maximize the predicted economic efficiency. The correctness of the recommendations received was evaluated by experts, as well as by conducting a natural experiment.

ARTIFICIAL INTELLIGENCE AND DECISION MAKING. 2024;(2):53-61
pages 53-61 views

System, Evolutionary, Cognitive Modeling

Optimization of the operation of an oil refining plant using a neural network forecast of its economic efficiency

Matorin S., Pesotsky S., Zhikharev A., Dmitrieva Y.

Аннотация

The article discusses normative systems (formal systems built genetically) of system-structural and system-object analysis. An improved alphabet of connections and nodes of the normative system of system-object analysis, based on the “Unit-Function-Object” approach, is proposed. Variants of meaningful interpretation of alphabetic nodes as a means for modeling various processes are pre- sented. For the process of manufacturing products from raw materials, the possibility of partial automation of the procedure for constructing graphic-analytical models of processes using an improved alphabet is shown.

ARTIFICIAL INTELLIGENCE AND DECISION MAKING. 2024;(2):62-75
pages 62-75 views

Heterogeneous ssemantic networks in formal description of the organization of psychological structures

Aleksandrov I., Maksimova N.

Аннотация

Organization of psychological structure in strategic game was described as heterogeneous semantic network in terms of components and nine types of logical relations. Each component contains two sets of informational models of interaction: individual with the subject fields (1st kind) and with other components (2nd kind). Analysis of neuronal basis of semantic network permitted to define ontological status of components and their interactions. Each type of logical relations between components corresponds to certain type of ontological interrelations between informational models of the 2nd kind. So, the main factor of heterogeneity of semantic networks could be complex organization and polysemy of their components (entities), i.e. coexistence of many informational models fixed on the same component, their simultaneous actualization and permanent complication.

ARTIFICIAL INTELLIGENCE AND DECISION MAKING. 2024;(2):76-86
pages 76-86 views

Hybrid algorithm for mixed multi-objective optimization «cuckoo search» with genetic crossover operator

Sarin K.

Аннотация

The article proposes a mixed-integer multi-objective optimization algorithm based on the cuckoo search metaheuristic and the genetic crossover operator. Search in discrete space is carried out using a genetic operator, and in continuous space using a metaheuristic strategy. Performance was as- sessed using modified ZDT and DTLZ tests with mixed variables. The experimental results showed the high efficiency of the proposed algorithm on complex estimates of convergence and diversity.

ARTIFICIAL INTELLIGENCE AND DECISION MAKING. 2024;(2):87-105
pages 87-105 views

Intelligent Planning and Control

New approaches to the approximation of solutions in machine learning

Gorobtsov A., Ryzhov E., Orlova Y., Donsckaia A.

Аннотация

Machine learning tasks focused on determining the laws of control of robots with complex locomotion are considered. The exponential computational complexity of such tasks is shown when using existing methods, in particular, reinforcement learning. The theoretical possibility of finding a multidimensional control function based on differential-algebraic equations of the dynamics of such systems is substantiated by varying the selected subset of the coupling equations. The possibility of a significant reduction in the dimension of the parameter space of the optimization problem on this basis is analyzed. Examples of the proposed method use for solving problems of the dynamics of machines, zoomorphic and anthropomorphic robots are given. The compatibility of the proposed mathematical method with neuromorphic dynamic systems used as a kernel in reservoir computing is shown. The fundamental admissibility of designing hardware for implementing reservoir computing on this basis is shown.

ARTIFICIAL INTELLIGENCE AND DECISION MAKING. 2024;(2):106-115
pages 106-115 views

Machine Learning, Neural Networks

Development of a three-dimensional convolutional neural network with attention for aneurysm detection

Sinitsa S., Zyablova E., Kardailskaya D., Zayats I., Khalafyan A., Ishchenko A.

Аннотация

The paper considers a prototype of a three-dimensional convolutional neural network with an attention block detecting the probability of intracranial cerebral aneurysms in a single contrast computed tomography-angiography study. DICOM contrast computed tomography-angiography data with and without intracranial aneurysms were used to train the network. Metadata from the studies were not used. The data were divided into training and validation subsets in the proportion of 65% and 35%, respectively. Using Keras and Tensorflow libraries in the Python programming environment, a 192x192x128 three-dimensional convolutional neural network model with 4 convolutional layers, a kernel of dimension 3 and self-attention block was developed. The accuracy, precision and recall of classification on test samples reached 96%, 99% and 93% respectively that exceeded the performance of previously known neural networks.

ARTIFICIAL INTELLIGENCE AND DECISION MAKING. 2024;(2):116-122
pages 116-122 views

Analysis of Signals, Audio and Video Information

A fast optimization technique for the regression estimation of the probability density of a one-dimensional random variable

Lapko A., Lapko V.

Аннотация

A method is proposed for the fast selection of the blurriness coefficient of the kernel functions of the regression estimation of the probability density of a one-dimensional random variable. For a fast selection, the results of studying the asymptotic properties of the regression estimate of the probability density are used. A method for estimating the components of the optimal blurriness coefficient is proposed. The method of computational experiment is used to analyze the effectiveness of the proposed approach for a fast selection of the blurriness coefficient of the regression estimate of the probability density for a family of lognormal distribution laws for different volumes of initial data, and promising procedures for sampling the range of values of a random variable.

ARTIFICIAL INTELLIGENCE AND DECISION MAKING. 2024;(2):123-131
pages 123-131 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».