Том 11, № 1 (2017)

Мұқаба

Бүкіл шығарылым

Articles

Foresight and STI Governance Ten Year Anniversary

Editorial T.

Аннотация

--

Forsajt. 2017;11(1):6-7
pages 6-7 views

STRATEGIES

Corporate Foresight in Multinational Business Strategies

Bereznoy A.

Аннотация

The paper explores corporate foresight as a new important tool within the strategic management system of multinational corporations (MNCs). The author directly connects the recent rise of corporate foresight with MNCs’ growing need to fill the gaps in traditional corporate strategic management, which struggles with the challenges of today’s global turbulent business-environment (known as VUCA world characterised by unprecedented volatility, uncertainty, complexity and ambiguity). From this perspective, corporate foresight is capable of providing a number of viable responses. They include the significant expansion of the horizon of MNCs’ long-term future vision, enhanced capabilities of business-environment scanning (identifying not only clearly visible trends but the so-called weak signals as well) and strengthening intra-firm communications over the course of the strategy development process, thus contributing to the implementation capacity of multinational corporate team. Within the analysis of the actual corporate foresight practices of major multinationals, special attention is paid to the common features of foresight organization (standard process phases, the typical set of methods used) and peculiarities related mainly to different MNCs’ sector-specific environment characteristics, including the complexity and dynamics of change. An attempt is also made to describe the actual impact of corporate foresight activities on the effectiveness of the key functions of MNCs’ strategic management. The author draws the conclusion that corporate foresight is becoming a core element of the strategic management architecture of multinational businesses, striving to protect and strengthen its global market positioning in an increasingly turbulent and unpredictable environment. For MNCs’ top management, trying to find the right strategic course in a radically changing competitive landscape, this powerful tool is increasingly playing the same role as a GPS navigator for car drivers lost in an unfamiliar city.
Forsajt. 2017;11(1):9-22
pages 9-22 views

INNOVATION

Why and How the Value of Science-Based Firms Violates Financial Theory: Implications for Policy and Governance

Bredikhin S., Linton J., Matoszko T.

Аннотация

How and why the positive net effect of science related activities substantially increases the value that would be anticipated by the financial theory that seems to work so well for other fields is considered here. A qualitative analysis of 25 small listed biotechnology RD firms illustrates that these firms do not follow the neo-classical expectation of Gaussian returns. To better understand this deviation from the expected Gaussian returns the firms are compared to SP 100 and Thomson Reuters Global Innovator List. It is found that while these large firms have a higher than expected frequency of non-Gaussian events, the causes appear to be dominated by macro-economic or industrial events that impact large numbers of firms. With the small RD intensive biotechnology firms, it is possible to identify specific events that appear to trigger the sudden increase or decrease in value. A better understanding of the nature and magnitude of these events allows for policy makers, investors and managers to better comprehend the unusually large risks and new opportunities associated with biotechnology RD. From this, a greater insight is afforded into the dynamic value of RD in general.
Forsajt. 2017;11(1):24-30
pages 24-30 views

Intellectual Capital and Its Impact on the Financial Performance of Russian Manufacturing Companies

Andreeva T., Garanina T.

Аннотация

Intellectual Capital (IC) has been argued to be the key element of value creation in the contemporary economy. According to the results obtained in [Molnar, 2004] in the 1980s the share of tangible assets accounted for about 62% of market capitalization of companies on developed markets. However, by the start of the 2000s, their share fell to 16%. This has been widely supported by empirical research, but mainly based on the data from developed markets. The questions of how IC and its elements work on emerging markets remains under-researched due to a lack of empirical research devoted to this topic. The aim of the study is to provide empirical insight into the relationship between three main elements of IC (human, relational and organisational) and organisational performance of Russian companies, such as asset profitability, net sales growth and market share. The sample includes 240 Russian companies. Information about different elements of intellectual capital has been gathered with the help of a questionnaire that has been answered by the executive management of the companies included in the sample over the course of January-March 2015. The data is collected with the survey using the scales that have been already internationally. The findings based on regression analysis demonstrate that structural and human capital positively influence organisational performance, while relational capital does not. We can assume that the results that we obtained can be explained by the specific features of the analyzed industries. For manufacturing companies the organizational structure and the effectiveness of internal processes play a much more important role in company value creation than relations with customers and other stakeholders. The core managerial implication of this study is that building the structural capital, providing employees with efficient and relevant information systems and tools to support cooperation between employees, as well as carefully documenting organizational knowledge and making it easily accessible for employees, should be in the focus of the managers of manufacturing companies. The concept of IC management in our article is developed within the international context and focuses on emerging markets. At the end of the paper, the main areas for further research are presented.
Forsajt. 2017;11(1):31-40
pages 31-40 views

SCIENCE

Scientific Cooperation in a German-Polish Border Region in the Light of EU Enlargement 

Gunther J., Latifi G., Lubacha-Sember J., Tobelmann D.

Аннотация

This paper evaluates the economic advantages and disadvantages of the Eastern expansion of the European Union for the old and the new EU member states, and introduces support programmes which aim to integrate regions on both sides of the border. It focuses especially on the development of cross-border scientific cooperation between Germany and Poland. An empirical study on the example of the Europa University Viadrina (EUV), a newly founded university in the German-Polish border region, shows the extent of German-Polish cooperation based on co-publication activity. In our small-scale empirical investigation for the Faculty of Business Administration and Economics of the EUV, we identified quite a number of co-publications between EUV staff and Polish colleagues. Most of them take place within the EUV, and many relate to cooperative work with scientific entities in both Poland and Germany. The entire intensity and frequency of cooperative scientific activities is, however, much broader than the publication analysis shows and offers scope for further integration with possible positive spillovers for the economic development as well.
Forsajt. 2017;11(1):42-53
pages 42-53 views

MASTER CLASS

Approaches to Defining and Measuring Russia’s Internet Economy

Plaksin S., Abdrakhmanova G., Kovaleva G.

Аннотация

The rapid development of digital technologies ischanging production processes and forms of interaction. It has encouraged growing interest in electronic content and created a new segment of the economy where all actors rely on the internet. These processes are most noticeable in developed countries. Russia is no exception. The development of the domestic segment of the internet economy — the economy of the Runet — is of particular importance due to the size of the country, the significant socioeconomic heterogeneity and underdevelopment of the transportation networks in the Russian regions. A study of the phenomenon of the internet economy requires a reliable information base. It is hard to provide an adequate quantitative estimate of the size of the Internet economy for the following reasons. First, the existing statistical indicator system was created before the Internet and Internet businesses were widespread. Secondly, this new segment of economy is much more heterogeneous than traditional sectors and industries and thus difficult to measure. This paper summarises the results of a review of international and Russian approaches on how to measure the Internet economy. It also introduces a new way to measure the size of Russia’s Internet economy that is based on the principles of the System of National Accounts (SNA), using officially available statistical data, thus making this approach different from the previous recommendations. This new approach ensures a stable reproducibility of calculations, reliability and comparability of results as well as compliance with the standards of government statistics. The evaluation of the dynamics of economic processes that drive the Internet economy was not in the scope of the study. This requires a separate study, including an analysis of how indices of constant quality that neutralize the effect of changes in consumer product properties and deflators are created. The authors stipulate that these research areas hold independent interest.

Forsajt. 2017;11(1):55-65
pages 55-65 views

The Development of an Intelligent Leadership Model for State Universities

Keikha A., Hoveida R., Yaghoubi N.

Аннотация

Higher education and intelligent leadership are considered important parts of every country’s education system, which could potentially play a key role in reaching the goals of society. In theories of leadership, new patterns attempt to view leadership through the prism of creative and intelligent phenomenon. This paper aims to design and develop an intelligent leadership model for public universities. A qualitative-quantitative research method was used to design a basic model of intelligent leadership. The opinions of pundits and experts with a purposive sampling method to achieve theoretical saturation was used to design a model in the qualitative phase. During model testing based on confirmatory factor analysis, data indicated that dimensions of intelligent leadership were placed in the four components: rational leadership, emotional leadership, spiritual leadership and collective leadership and classified in sub-categories. Rational leadership was classified into five sub-categories (strategic thinking, common targeting, planning, decision-making and monitoring and feedback); emotional leadership was classified into four sub-categories (self-awareness, self-management, motivation and social awareness); spiritual leadership was classified into seven sub-categories (vision, belief in achieving this goal, altruism, meaningful work, membership, organizational commitment and feedback); and finally, collective leadership was classified into the three sub-categories (communication, development of a communication network and –an exchange of opinions between the leader and team). The results presented in the paper correspond with statistical logic. Finally, the test model and the Delphi technique were applied using the survey approach and the ultimate model was described, including 426 codes, 89 sub-categories and four main categories (rational leadership, emotional leadership, spiritual leadership and collective leadership).
Forsajt. 2017;11(1):66-74
pages 66-74 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».