🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Integrable products of measurable operators


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Let τ be a faithful normal semifinite trace on von Neumann algebra M, 0 < p < +∞ and Lp(M, τ) be the space of all integrable (with respect to τ) with degree p operators, assume also that \(\widetilde M\) is the *-algebra of all τ-measurable operators. We give the sufficient conditions for integrability of operator product \(A,\;B \in \widetilde M\). We prove that ABLp(M, τ) ⇔ ABLp(M, τ) ⇔ AB* ∈ Lp(M, τ); moreover, ||AB||p = |||A|B||p = |||A||B*|||p. If A is hyponormal, B is cohyponormal and ABLp(M, τ) then BALp(M, τ) and ||BA||p ≤ ||AB||p; for p = 1 we have τ(AB) = τ(BA). A nonzero hyponormal (or cohyponormal) operator \(A \in \widetilde M\) cannot be nilpotent. If \(A \in \widetilde M\) is quasinormal then the arrangement μt(An) = μt(A)n for all n ∈ N and t > 0. If A is a τ-compact operator and \(B \in \widetilde M\) is such that |A| log+|A|, ep|B|L1(M, τ) then AB,BAL1(M, τ).

About the authors

A. Bikchentaev

Kazan (Volga Region) Federal University

Author for correspondence.
Email: Airat.Bikchentaev@kpfu.ru
Russian Federation, Kremlevskaya ul. 18, Kazan, Tatarstan, 420008

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Pleiades Publishing, Ltd.