🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Integrable products of measurable operators


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Let τ be a faithful normal semifinite trace on von Neumann algebra M, 0 < p < +∞ and Lp(M, τ) be the space of all integrable (with respect to τ) with degree p operators, assume also that \(\widetilde M\) is the *-algebra of all τ-measurable operators. We give the sufficient conditions for integrability of operator product \(A,\;B \in \widetilde M\). We prove that ABLp(M, τ) ⇔ ABLp(M, τ) ⇔ AB* ∈ Lp(M, τ); moreover, ||AB||p = |||A|B||p = |||A||B*|||p. If A is hyponormal, B is cohyponormal and ABLp(M, τ) then BALp(M, τ) and ||BA||p ≤ ||AB||p; for p = 1 we have τ(AB) = τ(BA). A nonzero hyponormal (or cohyponormal) operator \(A \in \widetilde M\) cannot be nilpotent. If \(A \in \widetilde M\) is quasinormal then the arrangement μt(An) = μt(A)n for all n ∈ N and t > 0. If A is a τ-compact operator and \(B \in \widetilde M\) is such that |A| log+|A|, ep|B|L1(M, τ) then AB,BAL1(M, τ).

Авторлар туралы

A. Bikchentaev

Kazan (Volga Region) Federal University

Хат алмасуға жауапты Автор.
Email: Airat.Bikchentaev@kpfu.ru
Ресей, Kremlevskaya ul. 18, Kazan, Tatarstan, 420008

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2016