🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Topological Analysis of the Liouville Foliation for the Kovalevskaya Integrable Case on the Lie Algebra so(4)

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this paper we study the topology of the Liouville foliation for the integrable case of Euler’s equations on the Lie algebra so(4) discovered by I.V. Komarov, which is a generalization of the Kovalevskaya integrable case in rigid body dynamics. We generalize some results by A.V. Bolsinov, P.H. Richter, and A.T. Fomenko about the topology of the classical Kovalevskaya case. We also show how the Fomenko–Zieschang invariant can be calculated for every admissible curve in the image of the momentum map.

About the authors

V. Kibkalo

Lomonosov Moscow State University, GSP-1

Author for correspondence.
Email: slava.kibkalo@gmail.com
Russian Federation, Moscow, 119991

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Pleiades Publishing, Ltd.