🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Topological Analysis of the Liouville Foliation for the Kovalevskaya Integrable Case on the Lie Algebra so(4)


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this paper we study the topology of the Liouville foliation for the integrable case of Euler’s equations on the Lie algebra so(4) discovered by I.V. Komarov, which is a generalization of the Kovalevskaya integrable case in rigid body dynamics. We generalize some results by A.V. Bolsinov, P.H. Richter, and A.T. Fomenko about the topology of the classical Kovalevskaya case. We also show how the Fomenko–Zieschang invariant can be calculated for every admissible curve in the image of the momentum map.

Sobre autores

V. Kibkalo

Lomonosov Moscow State University, GSP-1

Autor responsável pela correspondência
Email: slava.kibkalo@gmail.com
Rússia, Moscow, 119991

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018