🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Analogy of Bombieri’s number for bounded univalent functions


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Bombieri’s numbers σmn characterize the behavior of the coefficient body for the class S of all holomorphic and univalent functions f in the unit disk normalized by f(z) = z + a2z2 +.... The number σmn is the limit of ratio for Re(nan) and Re(m−am) as f tends to the Koebe function K(z) = z(1 − z)−2. In particular, σ23=0. We define analogous numbers σmn(M) for the class S(M) ⊂ S of bounded functions |f(z)|< M, |z| < 1, M >1, with the limit of ratio for Re(pn(M) − an) and Re(pm(M) − am) as f tends to the Pick function PM(z) = MK−1(K(z)/M) = z + Σ n=2pn(M)zn. We prove that σ23(M) = −4/M, M > 1.

About the authors

V. Gordienko

Saratov State University

Author for correspondence.
Email: valeriygor@mail.ru
Russian Federation, ul. Astrakhanskaya 83, Saratov, 410012

D. Prokhorov

Saratov State University

Email: valeriygor@mail.ru
Russian Federation, ul. Astrakhanskaya 83, Saratov, 410012

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Pleiades Publishing, Ltd.