🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Analogy of Bombieri’s number for bounded univalent functions


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Bombieri’s numbers σmn characterize the behavior of the coefficient body for the class S of all holomorphic and univalent functions f in the unit disk normalized by f(z) = z + a2z2 +.... The number σmn is the limit of ratio for Re(nan) and Re(m−am) as f tends to the Koebe function K(z) = z(1 − z)−2. In particular, σ23=0. We define analogous numbers σmn(M) for the class S(M) ⊂ S of bounded functions |f(z)|< M, |z| < 1, M >1, with the limit of ratio for Re(pn(M) − an) and Re(pm(M) − am) as f tends to the Pick function PM(z) = MK−1(K(z)/M) = z + Σ n=2pn(M)zn. We prove that σ23(M) = −4/M, M > 1.

Sobre autores

V. Gordienko

Saratov State University

Autor responsável pela correspondência
Email: valeriygor@mail.ru
Rússia, ul. Astrakhanskaya 83, Saratov, 410012

D. Prokhorov

Saratov State University

Email: valeriygor@mail.ru
Rússia, ul. Astrakhanskaya 83, Saratov, 410012

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017