Processing of Antimony-tin Concentrates by Vacuum Distillation

Cover Page

Cite item

Full Text

Abstract

Object of research: the paper is devoted to the creation of environmentally friendly, technologically efficient and cost-effective high-performance integrated circuits for the processing of concentrate antimony-tin (CАТ) generated in the control filtering in the chemical and metallurgical shop, with commercial production of single-element products of antimony and tin. To analyze the behavior of multicomponent alloy in the processing, study of values of pressure and temperature, prediction of product composition and degree of separation of the metals during the high temperature sublimation the equilibrium phase diagrams VLE (vapor liquid equilibrium), in particular, the temperature–composition "T–x" are calculated. Objective: to study the influence of temperature and pressure in the system on the completeness of extraction and the degree of separation of antimony and tin from the CАТ. Methods and approaches: in constructing the equilibrium phase diagrams VLE calculation of the activity coefficients of the components of the Sb-Sn alloy was performed using three-dimensional model of molecular interaction volume model (MIVM). Novelty: provide new information on the influence of temperature and vacuum depth on the degree of sublimation and separation of metals from Sb-Sn compositions of different composition. Main results: in the temperature range 823–1073 К the saturated vapor pressure (Pа) Sn (0.00332–81.193).10–6 and Sb (3.954–273.664) are calculated. High values of p*Sb/p*Sn = (118.976–0.337).107 and the separation factor logβSb = 6.262–9.435 assume the theoretical possibility to separate these components by vacuum distillation, while the antimony is concentrated in the composition of the sublimates (βSb > 1), and tin – the distillation residue. The tin content in the gas phase, the mole fraction (m. f.): уSn = (0.002–9498.3).10–4, increases in the temperature interval of 921–1878 K, pressure of 1.33–133 Pа and the amount of metal (m. f.) in the alloy хSn = 0.9–0.9999. According to the values of the MIVM γSb = 0.439–0.992 and γSn = 0.433–0.992 for Sb-Sn alloy composition of 0.1–0.9 in the studied temperature range. Practical relevance: the equilibrium diagrams VLE are used in the preliminary stages of designing optimal technological regimes of industrial installations for vacuum distillation and for a reasonable choice of temperature and pressure of sublimation with the goal of obtaining Sn- and Sb-containing products of a given composition. The concept of CAT refining vacuum distillation is proposed.

About the authors

A. A. Korolev

Email: gennadymaltsev@mail.ru
JSC "Uralelektromed", gennadymaltsev@mail.ru

G. I. Maltsev

Email: mgi@elem.ru
D.Sc. (Engineering), Associate Professor, JSC "Uralelektromed", mgi@elem.ru

K. L. Timofeev

Email: K.Timofeev@elem.ru
Ph.D. (Engineering), JSC "Uralelektromed", K.Timofeev@elem.ru

V. G. Lobanov

Email: lobanov-vl@yandex.ru
Ph.D. (Engineering), Associate Professor, Ural Federal University, lobanov-vl@yandex.ru

References

  1. Berman A. Total pressure measurements in vacuum technology. – 1st ed. – New York: Academic Press, 1985. – 412 p. – ISBN 9781483273792.
  2. Winkler O., Bakish R. Vacuum metallurgy. – Amsterdam: Elsevier Science Ltd., 1971. – 906 р. – ISBN-10: 0444408576. – ISBN-13: 978-0444408570.
  3. Jia G.-b., Yang B., Liu D.-c. Deeply removing lead from Pb-Sn alloy with vacuum distillation // Transactions of Nonferrous Metals Society of China. – 2013. – Vol. 23, iss. 6. – P. 1822–1831. – doi: 10.1016/S1003-6326(13)62666-7.
  4. Process optimization for vacuum distillation of Sn–Sb alloy by response surface methodology / A. Wang, Y. Li, B. Yang, B. Xu, L. Kong, D. Liu // Vacuum.
  5. – 2014. – Vol. 109. – P. 127–134. – doi: 10.1016/j.vacuum.2014.07.013.
  6. Dai Y.N. Vacuum metallurgy of nonferrous metals. – Beijing: Metallurgical Industry Press, 2009. – P. 72.
  7. Recycling of metals from waste Sn-based alloys by vacuum separation / B. Yang, L.-x. Kong, B.-q. Xu, D.-c. Liu, Y.-N. Dai // Transactions of Nonferrous Metals Society of China. – 2015. – Vol. 25, iss. 4. – P. 1315–1324. – doi: 10.1016/S1003-6326(15)63730-X.
  8. Research on the removal of impurities from crude nickel by vacuum distillation / D.C. Liu, B. Yang, F. Wang, Q.C. Yu, L. Wang, Y.N. Dai // Physics Procedia. – 2012. – Vol. 32. – P. 363–371. – doi: 10.1016/j.phpro.2012.03.570.
  9. Dai Y.N., Yang B. Non-ferrous metals and vacuum metallurgy. – Beijing: Metallurgical Industry Press, 2000. – P. 40.
  10. Smith J.M., Van Ness H.C., Abbott M.M. Introduction to chemical engineering thermodynamics. – 6th ed. – New York: McGraw-Hill, 2001. – 749 p. – ISBN-10: 0000053759. – ISBN-13: 978-0000053756.
  11. Tao D.P. A new model of thermodynamics of liquid mixtures and its application to liquid alloys // Thermochimica Acta. – 2000. – Vol. 363, iss. 1–2. – P. 105–113. – doi: 10.1016/S0040-6031(00)00603-1.
  12. Determination and modeling of the thermodynamic properties of liquid calcium–antimony alloys / S. Poizeau, H.J. Kim, J.M. Newhouse, B.L. Spatocco, D.R. Sadoway // Electrochimica Acta. – 2012. – Vol. 76. – P. 8–15. – doi: 10.1016/j.electacta.2012.04.139.
  13. Thermodynamic properties of calcium–magnesium alloys determined by emf measurements / J.M. Newhouse, S. Poizeau, H. Kim, B.L. Spatocco, D.R. Sadoway // Electrochimica Acta. – 2013. – Vol. 91. – P. 293–301. – doi: 10.1016/j.electacta.2012.11.063.
  14. Thermoelectric property of bulk CaMgSi intermetallic compound / N. Miyazaki, N. Adachi, Y. Todaka, H. Miyazaki, Y. Nishino // Journal of Alloys and Compounds. – 2017. – Vol. 691. – P. 914–918. – doi: 10.1016/j.jallcom.2016.08.227.
  15. Materials science and technology: a comprehensive treatment. Vol. 1. Structure of solids / ed. by V. Gerold. – Weinheim: VCH, 1993. – 621 p.
  16. Selected values of the thermodynamic properties of binary alloys / R. Hultgren, P.D. Desai, D.T. Hawkins, M. Geiser, K.K. Kelley. – Metals Park, OH: American Society for Metals, 1973. – 1435 p.
  17. Dai Y., Yang B. Vacuum metallurgy for non-ferrous metals and materials. – Beijing: Metallurgical industry Press, 2000. – 124 p. (In Chinese).
  18. Application of molecular interaction volume model in vacuum distillation of Pb-based alloys / H.W. Yang, B. Yang, B.Q. Xu, D.C. Liu, D.P. Tao // Vacuum. – 2012. – Vol. 86, iss. 9. – P. 1296–1299. – doi: 10.1016/j.vacuum.2011.11.017.
  19. Королев А.А., Краюхин С.А., Мальцев Г.И. Равновесные системы «газ–жидкость» для сплава Sb-Ag при вакуумной дистилляции // Обработка металлов (технология, оборудование, инструменты). – 2017. – № 4 (77). – С. 68–83. – doi: 10.17212/1994-6309-2017-4-68-83.
  20. Measurement and modeling of phase equilibria for Sb-Sn and Bi-Sb-Sn alloys in vacuum distillation / C.B. Nan, H. Xiong, B.-q. Xu, B. Yang, D.C. Liu, H.W. Yang // Fluid Phase Equilibria. – 2017. – Vol. 442. – P. 62–67. – doi: 10.1016/j.fluid.2017.03.016.
  21. Kinetics of Pb evaporation from Pb-Sn liquid alloy in vacuum distillation / J.Y. Zhao,  H.W. Yang, C.B. Nan, B. Yang, D.C. Liu, B.-q. Xu // Vacuum. – 2017. – Vol. 141. – P. 10–14. – doi: 10.1016/j.vacuum.2017.03.004.
  22. Vapor–liquid phase equilibria of binary tin–antimony system in vacuum distillation: experimental investigation and calculation / L.-x. Kong, J. Xu, B.-q. Xu, S. Xu, B. Yang // Fluid Phase Equilibria. – 2016. – Vol. 415. – P. 176–183. – doi: 10.1016/j.fluid.2016.02.012.
  23. Experimental and modeling vapor-liquid equilibria: separation of Bi from Sn by vacuum distillation / C.В. Nan, H.W. Yang, B. Yang, D. Liu, H. Xiong // Vacuum. – 2017. – Vol. 135. – P. 109–114. – doi: 10.1016/j.vacuum.2016.10.035.
  24. Study on azeotropic point of Pb–Sb alloys by ab-initio molecular dynamic simulation and vacuum distillation / B. Song, N. Xu, W. Jiang, B. Yang, X. Chen, B. Xu, L. Kong, D. Liu, Y. Dai // Vacuum. – 2016. – Vol. 125. – P. 209–214. – doi: 10.1016/j.vacuum.2016.01.004.
  25. Experimental investigation and calculation of vapor–liquid equilibria for Cu–Pb binary alloy in vacuum distillation / C. Zhang, W.L. Jiang, B. Yang, D.C. Liu, B.Q. Xu, H.W. Yang // Fluid Phase Equilibria. – 2015. – Vol. 405. – P. 68–72. – doi: 10.1016/j.fluid.2015.07.043.
  26. Диаграммы состояния двойных металлических систем. В 3 т. Т. 1: справочник / под общ. ред. Н.П. Лякишева. – М.: Машиностроение, 1996. – 992 с. – ISBN 5-217-02688-X.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».