Features of ultrasound application in plasma-mechanical processing of parts made of hard-to-process materials

Cover Page

Cite item

Abstract

Introduction. Structural materials, including materials made of heat-resistant and hard-to-work steels, are widely used in various branches of mechanical engineering. To increase the efficiency of manufacturing parts of thermal equipment from heat-resistant and hard-to-work steels, the technological method of cutting with preliminary plasma heating of the workpiece is used. There is also a technological method of cutting metals, including hard-to-process materials by ultrasonic turning. Proceeding from this, in order to increase the efficiency of plasma machining of hard-to-process materials, it is necessary to investigate the technological possibilities of using ultrasonic turning of hard-to-process materials during plasma machining. The purpose of the work: to investigate the wear of cutting tools when using ultrasound in the conditions of plasma-mechanical processing of parts made of hard-to-process materials. The paper investigates the features of the plasma-mechanical processing under ultrasonic cutting conditions and determines the wear values of carbide cutters VK8, T5K10 and T15K6 when processing steels of grades 20Cr13Ni18 and 20Cr25Ni20Si2(cast). And also the wear of these cutters was determined under the conditions of conventional turning of the same materials to compare the results of wear of the cutters in different processing conditions. The research method is to determine the linear wear of carbide cutters along the back surface with conventional, plasma-mechanical and plasma-mechanical cutting assisted with ultrasonic cutting using an instrumental microscope and visual estimation with a 10x magnifying glass.  Results and discussion. The paper presents the results of experimental studies to determine the wear of cutting tools when processing heat-resistant steels of the 20Cr13Ni18 and 20Cr25Ni20Si2(cast) grades with carbide cutters of the VK8, T5K10 and T15K6 grades. Studies were carried out to determine the wear of carbide cutters as with conventional mechanical cutting, plasma-mechanical cutting, as well as plasma-mechanical cutting using ultrasound. The experiments were carried out when turning these materials on a modernized lathe mod.1A64. A rectifier with a controlled choke and a plasma torch mod.APR-403 are connected to the lathe; a plasma holder is placed on the lathe carriage. A semiconductor rectifier serves as a power source with a compressed electric arc of current. The arcing takes place between the cathode (plasma torch) and the anode (blank) at the point of the plasma-forming gas; compressed air passes through the nozzle channel of the plasma torch. During the experiments, the position of the plasma torch was adjusted relative to the part rotation axis. When conducting experiments on studying the wear of cutters under conditions of ultrasonic plasma-mechanical cutting, ultrasound was applied to the cutting edge using a device developed by the authors. When processing heat-resistant steels under the usual turning condition, processing modes were adopted: cutting speed V = 10 m/min, cutting depth t = 3...4 mm, longitudinal feed Sl = 0.31 mm/rev. It is found that when processing steel grade 20Cr13Ni18 by conventional cutting, the back surface of the carbide cutter made of T5K10 wears out to 1 mm in size within 10 minutes, and for the cutter made of VK8 – within 15 minutes. During plasma machining, the cutting speed and the feed rate were increased 2 times; the results of the wear of the cutters show that at the same time T5K10 wears out to 1 mm within 20 minutes, VK8 – within 25 minutes. Plasma-mechanical processing using ultrasound show that the carbide cutter T5K10 wears out by 0.50 mm in less than 50 minutes of cutting, and VK8 wears out by 0.35 mm. The same results are obtained when processing heat-resistant steel 20Cr25Ni20Si2(cast). Thus, the study of wear of carbide cutters in the processing of heat-resistant steels shows that the use of ultrasonic cutting in plasma-mechanical processing of steels can significantly reduce the amount of tool wear. The presented results confirm the prospects of using ultrasonic plasma-mechanical cutting of heat-resistant steels with blade tools.

About the authors

V. A. Abbasov

Email: abbasov49@aztu.edu.az
D.Sc. (Engineering), Professor, Department of Machine Building, Azerbaijan Technical University, 25 H. Cavid avenue, Baku, AZ 1073, Azerbaijan, abbasov49@aztu.edu.az

R. D. Bashirov

Email: rasim_agma@aztu.edu.az
D.Sc. (Engineering), Professor, Department of Machine Building, Azerbaijan Technical University, 25 H. Cavid avenue, Baku, AZ 1073, Azerbaijan, rasim_agma@aztu.edu.az

References

  1. Подураев В.Н. Резание труднообрабатываемых материалов. – М.: Высшая школа, 1974. – 587 с.
  2. Подураев В.Н., Соколов Н.М. Плазменно-фрезерная обработка крупных сварных узлов из высокопрочных сталей // Станки и инструмент. – 1989. – № 7. – С. 23–28.
  3. Резников А.Н., Черторижский Ю.Н., Мурин И.А. Определение режима плазменно-механической обработки // Станки и инструмент. – 1990. – № 1. – С. 30–31.
  4. Михалькова С.А. Плазменно-механическая обработка деталей металлургического оборудования // Вестник машиностроения. – 1989. – № 5. – С. 53–56.
  5. Маслов А.Р., Схиртладзе А.Г. Обработка труднообрабатываемых материалов резанием. – М.: Инновационное машиностроение, 2018. – 208 с. – ISBN 978-5-6040281-0-0.
  6. Патент № I 2003.0014 Азербайджа?нская Респу?блика. Устройства для ультразвукового резания и растачивания металлов / Аббасов В.А., Баширов Р.Д. – 2003.
  7. Баширов Р.Д., Аббасов В.А. Выбор параметров пьезоэлементов и расчетов токарного резца-концентратора для ультразвукового точения // Механика – машиностроение. – 2001. – № 1. – С. 42–45.
  8. Баширов Р.Д., Аббасов В.А. Устройства для ультразвукового точения и резки металлов // 48-я учебно-методическая научно-техническая конференция профессорско-преподавательского состава и аспирантов АзТУ. – Баку, 2001. – Ч. 2. – С. 79–81.
  9. Регулирование газодинамических параметров сжатой дуги на выходе двухкамерного плазмотрона / Ю.Д. Щицын, И.Б. Фомин, Н.Н. Струков, Д.С. Белинин, П.С. Кучев // Сварка и диагностика. – 2011. – № 6. – С. 14–16.
  10. Ablyaz T.R., Belinin D.S. Wire electrical discharge machining of items after plasmatic surface hardening // Middle-East Journal of Scientific Research. – 2014. – Vol. 19, N 8. – P. 1096–1098. – doi: 10.5829/idosi.mejsr.2014.19.8.21041.
  11. Чурюмов А.Ю., Поздняков А.В. Горячая пластическая деформация и микроструктура жаропрочной нержавеющей стали 20Х18Н23 // Актуальные проблемы физического металловедения сталей и сплавов: сборник тезисов докладов XXV Уральской школы металловедов-термистов (Екатеринбург, 3–7 февраля 2020 г.). – Екатеринбург: Изд-во Урал. ун-та, 2020. – С. 185–187.
  12. Тарасов С.С., Коряжкин А.А. Повышение эффективности токарной обработки деталей ГТД из жаропрочных никелевых сплавов керамическим инструментом // Справочник. Инженерный журнал. – 2012. – № 11. – С. 14–19.
  13. Волков Д.И., Проскуряков С.Л., Тарасов С.С. Применение высокоскоростной токарной обработки для изготовления деталей из жаропрочных никелевых сплавов керамическим инструментом // Вестник РГАТУ им. П.А. Соловьева.– 2012. – № 2. – С. 134–137.
  14. Волков Д.И., Тарасов С.С. Расчетное определение параметров сечения среза при высокоскоростной токарной обработке криволинейных поверхностей деталей ГТД из жаропрочных никелевых сплавов // Вестник РГАТУ им. П.А. Соловьева. – 2013. – № 1. – С. 61–68.
  15. Коряжкин А.А., Тарасов С.С. Повышение эффективности процесса токарной обработки криволинейных поверхностей деталей из жаропрочных сплавов керамическим инструментом // СТИН. – 2013. – № 8. – С. 23–27.
  16. Leppert T. Surface layer properties of AISI 316L steel when turning under dry and with minimum quantity lubrication conditions // Proceedings of the Institution of Mechanical Engineers. Pt. B: Journal of Engineering Manufacture. – 2012. – Vol. 226, iss. 4. – P. 617–631. – doi: 10.1177/0954405411429894.
  17. Bushlya V., Zhou J., Ståhl J.E. Effect of cutting conditions on machinability of superalloy Inconel 718 during high speed turning with coated and uncoated PCBN tools // Procedia CIRP. – 2012. – Vol. 3. – P. 370–375. – doi: 10.1016/j.procir.2012.07.064.
  18. Laser-assisted high-speed finish turning of superalloy Inconel 718 under dry conditions / H. Attia, S. Tavakoli, R. Vargas, V. Thomson // Procedia CIRP. – 2010. – Vol. 59. – P. 83–88. – doi: 10.1016/j.cirp.2010.03.093.
  19. Effect of low-frequency vibration on workpiece in EDM processes / G.S. Prihandana, M. Mahardika, M. Hamdi, K. Mitsui // Journal of Mechanical Science and Technology. – 2011. – Vol. 25, no. 5. – P. 1231–1234. – doi: 10.1007/s12206-011-0307-1.
  20. Kötter D. Herstellung von Schneidkantenverrundungen und deren Einfluss auf das Einsatzverhalten von Zerspanwerkzeugen. These / Universität Dortmund. – Vulkan-Verlag, 2006. – 107 S. – ISBN ‎3802787366. – ISBN 978-3802787362.
  21. Тахман С.И. Разработка единых моделей процесса изнашивания инструментальных твердых сплавов // Вестник машиностроения. – 2008. – № 9. – C. 56–59.
  22. Astakhov V.P., Davim P.J. Tools (geometry and material) and tool wear // Machining / ed. by P.J. Davim. – London: Springer, 2008. – P. 29–57. – doi: 10.1007/978-1-84800-213-5_2.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».