Особенности применения ультразвука при плазменно-механической обработке деталей из труднообрабатываемых материалов

Обложка

Цитировать

Полный текст

Аннотация

Введение. Конструкционные материалы, в том числе материалы из жаропрочных и труднообрабатываемых сталей, широко применяются в различных отраслях машиностроения. Для повышения эффективности изготовления деталей термического оборудования из жаропрочных и труднообрабатываемых сталей применяется технологический метод резания с предварительным плазменным подогревом заготовки. Существует также технологический метод резания металлов, в том числе труднообрабатываемых ультразвуковым точением. Исходя из этого для повышения эффективности плазменной механической обработки труднообрабатываемых материалов необходимо исследовать технологические возможности применения ультразвукового точения при плазменной механической обработке. Цель работы: исследовать износ режущих инструментов при применении ультразвука в условиях плазменно-механической обработки деталей из труднообрабатываемых материалов. В работе исследованы: особенности процесса плазменно-механической обработки в условиях ультразвукового резания и определены величины износа твердосплавных резцов ВК8, Т5К10 и Т15К6 при обработке сталей марок 20Х13Н18 и 20Х25Н20С2Л, а также определены износ указанных резцов в условиях обычного точения этих же материалов для сопоставления результатов износа резцов в различных условиях обработки. Методом исследования является определение линейного износа твердосплавных резцов по задней поверхности при обычной, плазменно-механической и плазменно-механической обработке с применением ультразвукового резания. Линейный износ резцов был измерен инструментальным микроскопом и визуально обследован лупой с десятикратным увеличением. Результаты и обсуждение. В статье приводятся результаты экспериментальных исследований по определению износа режущих инструментов при обработке жаропрочных сталей марки 20Х13Н18 и 20Х25Н20С2Л твердосплавными резцами марки ВК8, Т5К10 и Т15К6. Проводились исследования по определению износа твердосплавных резцов как при обычном механическом резании, плазменно-механическим резании, а также плазменно-механическим резании с применением ультразвука. Эксперименты проводились при точении указанных материалов на модернизированном токарном станке мод.1А64. К токарному станку подключен выпрямитель с управляемым дросселем и плазмотрон мод. АПР-403, на суппорте станка размещен плазмодержатель. В качестве источника питания сжатой электрической дуги служит полупроводниковый выпрямитель. Электронная дуга горит между катодом (плазмотроном) и анодом (заготовкой) в точке плазмообразующего газа, сжатый воздух проходит через канал сопла плазмотрона. При проведении экспериментов положение плазмотрона регулировалось по отношению оси вращения детали. При проведении опытов по изучению износа резцов в условиях ультразвукового плазменно-механического резания ультразвук подавался на режущую кромку с помощью устройства, разработанного авторами. При обработке жаропрочных сталей в обычных условиях точения режимы обработки были следующими: скорость резания V = 10 м/мин, глубина резания t = 3…4 мм, продольная подача Sпр = 0,31 мм/об. Установлено, что при обработке сталей марки 20Х13Н18 при таких условиях задняя поверхность твердосплавного резца Т5К10 изнашивается до величины 1 мм в течение 10 мин, а твердосплавного резца ВК8 – в течение 15 мин. При плазменной механической обработке в 2 раза увеличены скорость резания и величина подачи, при этом Т5К10 изнашивается до 1мм в течение 20 минут, ВК8 – 25 мин. Плазменно-механическая обработка с применением ультразвука показала, что твердосплавный резец Т5К10 за 50 мин резания изнашивается на величину 0,50 мм, а ВК8 – 0,35 мм. Такие же результаты получены при обработке жаропрочной стали 20Х25Н20С2Л. Таким образом, исследование износа твердосплавных резцов при обработке жаропрочных сталей показали, что использование ультразвукового резания при плазменно-механической обработке сталей может значительно снизить величину износа инструмента. Представленные результаты подтверждают перспективность применения ультразвукового плазменно-механического резания жаропрочных сталей лезвийными инструментами.

Об авторах

В. А. Аббасов

Email: abbasov49@aztu.edu.az
доктор техн. наук, Профессор, Азербайджанский технический университет, пр. Гусейн Джавида, 25, г. Баку, AZ 1073, Азербайджан, abbasov49@aztu.edu.az

Р. Д. Баширов

Email: rasim_agma@aztu.edu.az
доктор техн. наук, Профессор, Азербайджанский технический университет, пр. Гусейн Джавида, 25, г. Баку, AZ 1073, Азербайджан, rasim_agma@aztu.edu.az

Список литературы

  1. Подураев В.Н. Резание труднообрабатываемых материалов. – М.: Высшая школа, 1974. – 587 с.
  2. Подураев В.Н., Соколов Н.М. Плазменно-фрезерная обработка крупных сварных узлов из высокопрочных сталей // Станки и инструмент. – 1989. – № 7. – С. 23–28.
  3. Резников А.Н., Черторижский Ю.Н., Мурин И.А. Определение режима плазменно-механической обработки // Станки и инструмент. – 1990. – № 1. – С. 30–31.
  4. Михалькова С.А. Плазменно-механическая обработка деталей металлургического оборудования // Вестник машиностроения. – 1989. – № 5. – С. 53–56.
  5. Маслов А.Р., Схиртладзе А.Г. Обработка труднообрабатываемых материалов резанием. – М.: Инновационное машиностроение, 2018. – 208 с. – ISBN 978-5-6040281-0-0.
  6. Патент № I 2003.0014 Азербайджа?нская Респу?блика. Устройства для ультразвукового резания и растачивания металлов / Аббасов В.А., Баширов Р.Д. – 2003.
  7. Баширов Р.Д., Аббасов В.А. Выбор параметров пьезоэлементов и расчетов токарного резца-концентратора для ультразвукового точения // Механика – машиностроение. – 2001. – № 1. – С. 42–45.
  8. Баширов Р.Д., Аббасов В.А. Устройства для ультразвукового точения и резки металлов // 48-я учебно-методическая научно-техническая конференция профессорско-преподавательского состава и аспирантов АзТУ. – Баку, 2001. – Ч. 2. – С. 79–81.
  9. Регулирование газодинамических параметров сжатой дуги на выходе двухкамерного плазмотрона / Ю.Д. Щицын, И.Б. Фомин, Н.Н. Струков, Д.С. Белинин, П.С. Кучев // Сварка и диагностика. – 2011. – № 6. – С. 14–16.
  10. Ablyaz T.R., Belinin D.S. Wire electrical discharge machining of items after plasmatic surface hardening // Middle-East Journal of Scientific Research. – 2014. – Vol. 19, N 8. – P. 1096–1098. – doi: 10.5829/idosi.mejsr.2014.19.8.21041.
  11. Чурюмов А.Ю., Поздняков А.В. Горячая пластическая деформация и микроструктура жаропрочной нержавеющей стали 20Х18Н23 // Актуальные проблемы физического металловедения сталей и сплавов: сборник тезисов докладов XXV Уральской школы металловедов-термистов (Екатеринбург, 3–7 февраля 2020 г.). – Екатеринбург: Изд-во Урал. ун-та, 2020. – С. 185–187.
  12. Тарасов С.С., Коряжкин А.А. Повышение эффективности токарной обработки деталей ГТД из жаропрочных никелевых сплавов керамическим инструментом // Справочник. Инженерный журнал. – 2012. – № 11. – С. 14–19.
  13. Волков Д.И., Проскуряков С.Л., Тарасов С.С. Применение высокоскоростной токарной обработки для изготовления деталей из жаропрочных никелевых сплавов керамическим инструментом // Вестник РГАТУ им. П.А. Соловьева.– 2012. – № 2. – С. 134–137.
  14. Волков Д.И., Тарасов С.С. Расчетное определение параметров сечения среза при высокоскоростной токарной обработке криволинейных поверхностей деталей ГТД из жаропрочных никелевых сплавов // Вестник РГАТУ им. П.А. Соловьева. – 2013. – № 1. – С. 61–68.
  15. Коряжкин А.А., Тарасов С.С. Повышение эффективности процесса токарной обработки криволинейных поверхностей деталей из жаропрочных сплавов керамическим инструментом // СТИН. – 2013. – № 8. – С. 23–27.
  16. Leppert T. Surface layer properties of AISI 316L steel when turning under dry and with minimum quantity lubrication conditions // Proceedings of the Institution of Mechanical Engineers. Pt. B: Journal of Engineering Manufacture. – 2012. – Vol. 226, iss. 4. – P. 617–631. – doi: 10.1177/0954405411429894.
  17. Bushlya V., Zhou J., Ståhl J.E. Effect of cutting conditions on machinability of superalloy Inconel 718 during high speed turning with coated and uncoated PCBN tools // Procedia CIRP. – 2012. – Vol. 3. – P. 370–375. – doi: 10.1016/j.procir.2012.07.064.
  18. Laser-assisted high-speed finish turning of superalloy Inconel 718 under dry conditions / H. Attia, S. Tavakoli, R. Vargas, V. Thomson // Procedia CIRP. – 2010. – Vol. 59. – P. 83–88. – doi: 10.1016/j.cirp.2010.03.093.
  19. Effect of low-frequency vibration on workpiece in EDM processes / G.S. Prihandana, M. Mahardika, M. Hamdi, K. Mitsui // Journal of Mechanical Science and Technology. – 2011. – Vol. 25, no. 5. – P. 1231–1234. – doi: 10.1007/s12206-011-0307-1.
  20. Kötter D. Herstellung von Schneidkantenverrundungen und deren Einfluss auf das Einsatzverhalten von Zerspanwerkzeugen. These / Universität Dortmund. – Vulkan-Verlag, 2006. – 107 S. – ISBN ‎3802787366. – ISBN 978-3802787362.
  21. Тахман С.И. Разработка единых моделей процесса изнашивания инструментальных твердых сплавов // Вестник машиностроения. – 2008. – № 9. – C. 56–59.
  22. Astakhov V.P., Davim P.J. Tools (geometry and material) and tool wear // Machining / ed. by P.J. Davim. – London: Springer, 2008. – P. 29–57. – doi: 10.1007/978-1-84800-213-5_2.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».