Structure and properties of coatings based on refractory elements obtained by the method of non-vacuum electron beam surfacing

Cover Page

Cite item

Abstract

Introduction. The development of modern industry requires materials capable of withstanding high temperatures and loads while maintaining functionality and performance. Traditional materials, such as 0.4 C-Cr structural steel, are widely used in mechanical engineering and are inexpensive. However, ordinary and low-alloy steels are subject to intense oxidation when exposed to temperatures above 400°C. To improve the performance of structural steels under high-temperature conditions, the development of effective methods for modifying their surfaces is an an urgent task. The purpose of this work is to develop a technology for creating high-temperature oxidation resistant surface layers on 0.4 C-Cr structural steel. For this purpose, the non-vacuum electron beam surfacing method was used, employing powder materials based on refractory elements: niobium, molybdenum, and boron. Materials and methods. In this study, modified layers were formed on 0.4 C-Cr steel using non-vacuum electron beam surfacing of Nb-Mo-B powder composites. The following research methods were used: optical microscopy, scanning electron microscopy, X-ray diffraction analysis, microhardness testing, high-temperature oxidation testing, and oxidation reaction kinetics determination. Results and discussion. The modified layers, which were 2.0–2.3 mm thick, exhibited a gradient structure consisting of molybdenum-doped niobium carbide present as dendrites and irregularly shaped crystals, as well as eutectic colonies based on the same carbide and α-Fe and α-(Mo,Fe) solid solutions. X-ray phase analysis identified the following phases in the modified layers: (Nb,Mo)C carbide and α-Fe and α-(Mo,Fe)-based solid solutions. The surfacing with Nb, Mo, and B resulted in the formation of layers on the surface of 0.4 C-Cr carbon steel that are 2.9 times harder and 3.9 times more temperature oxidation resistant than those of the unmodified steel.

About the authors

Evdokia G. Bushueva

Novosibirsk State Technical University

Email: bushueva@corp.nstu.ru
ORCID iD: 0000-0001-7608-734X
SPIN-code: 7234-8480
Scopus Author ID: 25627090600
ResearcherId: G-9820-2019
https://ciu.nstu.ru/kaf/persons/20088/

Ph.D. (Engineering), Associate Professor

Russian Federation, 630073, Russian Federation, Novosibirsk, 20 Prospekt K. Marksa

Artem E. Nastavshev

Novosibirsk State Technical University

Email: artem.nastavshev@yandex.ru
ORCID iD: 0009-0002-1082-2086
SPIN-code: 8192-5075

Student

Russian Federation, 630073, Russian Federation, Novosibirsk, 20 Prospekt K. Marksa

Ksenia A. Skorokhod

Khristianovich Institute of Theoretical and Applied Mechanics SB RAS

Email: k.skorokhod@itam.nsc.ru
ORCID iD: 0000-0003-0210-8405
SPIN-code: 7355-7796
Scopus Author ID: 56071091100
ResearcherId: HLW-5596-2023

Junior researcher

Russian Federation, 630090, Russian Federation, Novosibirsk, 4/1 Institutskaya str.

Evgeniy V. Domarov

Budker Institute of Nuclear Physics of Siberian Branch Russian Academy of Sciences

Email: domarov88@mail.ru
ORCID iD: 0000-0003-2422-1513
SPIN-code: 6160-8912
Scopus Author ID: 55325348200
ResearcherId: E-3638-2015

Scientific associate

Russian Federation, 630090, Russian Federation, Novosibirsk, 11 Acad. Lavrentieva Pr.

Ivan P. Mishin

Institute of Strength Physics and Materials Science of the Siberian Branch of the RAS

Author for correspondence.
Email: mip@ispms.ru
ORCID iD: 0000-0001-8294-7238
SPIN-code: 3626-3270
Scopus Author ID: 14827250100
ResearcherId: F-7394-2017

Ph.D. (Physics and Mathematics), Scientific associate

Russian Federation, 634055, Russian Federation, Tomsk, 2/4 pr. Akademicheskii

References

  1. Microstructure and corrosion behavior of chromium-rich stainless steel coatings deposited by different laser cladding processes / S. Sun, Z. Wu, M. Pang, J. Chang, Y. Xuan, H. Qi, R. Yang, Y. Wu // Journal of Materials Research and Technology. – 2024. – Vol. 29. – P. 3879–3890. – doi: 10.1016/j.jmrt.2024.02.044.
  2. High temperature corrosion resistance of FeCr(Ni, Al) alloys as bulk/overlay weld coatings in the presence of KCl at 600 °C / V. Ssenteza, J. Eklund, I. Hanif, J. Liske, T. Jonsson // Corrosion Science. – 2023. – Vol. 213. – P. 110896. – doi: 10.1016/j.corsci.2022.110896.
  3. Thermal spray coatings on high-temperature oxidation and corrosion applications – A comprehensive review / V. Lakkannavar, K.B. Yogesha, C.D. Prasad, R.K. Phanden, G. Srinivasa, S.C. Prasad // Results in Surfaces and Interfaces. – 2024. – Vol. 16. – P. 100250. – doi: 10.1016/j.rsurfi.2024.100250.
  4. Tribo-oxidation of Ti-Al-Fe and Ti-Al-Mn cladding layers obtained by non-vacuum electron beamtreatment / O.E. Matts, S.Yu. Tarasov, B. Domenichini, D.V. Lazurenko, A.V. Filippov, V.A. Bataev, M.V. Rashkovets, I.K. Chakin, K.I. Emurlaev // Surface and Coatings Technology. – 2021. – Vol. 421. – P. 127442. – doi: 10.1016/j.surfcoat.2021.127442.
  5. Оспенникова О.Г., Подъячев В.Н., Столянков Ю.В. Тугоплавкие сплавы для новой техники // Труды ВИАМ. – 2016. – № 10 (46). – С. 55–63. – doi: 10.18577/2307-6046-2016-0-10-5-5. – URL: http://viam-works.ru/ru/articles?art_id=1018 (дата обращения: 21.11.2025).
  6. Шестаков А.В., Карашаев М.М., Дмитриев Н.С. Технологические пути создания композиционных материалов на основе жаропрочных тугоплавких соединений (обзор) // Труды ВИАМ. – 2021. – № 8 (102). – С. 12–20. – doi: 10.18577/2307-6046-2021-0-8-12-20. – URL: http://viam-works.ru/ru/articles?art_id=1732 (дата обращения: 21.11.2025).
  7. Chen B., Zhuo L. Latest progress on refractory high entropy alloys: Composition, fabrication, post processing, performance, simulation and prospect // International Journal of Refractory Metals and Hard Materials. – 2023. – Vol. 110. – P. 105993. – doi: 10.1016/j.ijrmhm.2022.105993.
  8. Rymer L.-M., Lindner T., Lampke T. Enhanced high-temperature wear behavior of high-speed laser metal deposited Al0.3CrFeCoNi coatings alloyed with Nb and Mo // Surface and Coatings Technology. – 2023. – Vol. 470. – P. 129832. – doi: 10.1016/j.surfcoat.2023.129832.
  9. Corrosion behavior of refractory metals in liquid lead at 1000 °C for 1000 h / Z. Xiao, J. Liu, Z. Jiang, L. Luo // Nuclear Engineering and Technology. – 2022. – Vol. 54 (6). – P. 1954–1961. – doi: 10.1016/j.net.2021.12.014.
  10. Boride coatings structure and properties, produced by atmospheric electron-beam cladding / A. Teplykh, M. Golkovskiy, A. Bataev, E. Drobyaz, S.V. Veselov, E. Golovin, I.A. Bataev, A. Nikulina // Advanced Materials Research. – 2011. – Vol. 287–290. – P. 26–31. – doi: 10.4028/ href='www.scientific.net/AMR.287-290.26' target='_blank'>www.scientific.net/AMR.287-290.26.
  11. Oxidation performance of spark plasma sintered Inconel 625-NbC metal matrix composites / A. Grabos, P. Rutkowski, J. Huebner, D. Kozien, S. Zhang, Y.-L. Kuo, D. Kata, S. Hayashi // Corrosion Science. – 2022. – Vol. 205. – P. 110453. – doi: 10.1016/j.corsci.2022.110453.
  12. Kinetics and mechanisms of high-temperature oxidation in BCC and FCC high-alloy Fe-based alloys with high volume fraction of carbides / K. Wieczerzak, M. Stygar, T. Brylewski, R. Chulist, P. Bala, J. Michler // Materials & Design. – 2024. – Vol. 244. – P. 113163. – doi: 10.1016/j.matdes.2024.113163.
  13. Wear-resistant boride reinforced steel coatings produced by non-vacuum electron beam cladding / D.A. Santana, G.Y. Koga, W. Wolf, I.A. Bataev, A.A. Ruktuev, C. Bolfarini, C.S. Kiminami, W.J. Botta, A.M. Jorge Jr // Surface & Coatings Technology. – 2020. – Vol. 386. – P. 125466. – doi: 10.1016/j.surfcoat.2020.125466.
  14. Microstructure and mechanical properties of carbides reinforced nickel matrix alloy prepared by selective laser melting / T. Xia, R. Wang, Z. Bi, R. Wang, P. Zhang, G. Sun, J. Zhang // Materials. – 2021. – Vol. 14. – P. 4792. – doi: 10.3390/ma14174792.
  15. Effect of addition of metal carbide on the oxidation behaviors of titanium matrix composites / L. Yanbin, L. Yong, Z. Zhongwei, C. Yanhui, T. Huiping // Journal of Alloys and Compounds. – 2014. – Vol. 599. – P. 188–194. – doi: 10.1016/j.jallcom.2014.02.056.
  16. The elevated temperature oxidation and wear behavior of Fe20Co20Ni20Cr8Mo12B10Si10 high-entropy alloy coating by laser cladding / G. Zhang, Z. Zhang, J. Xuan, B. Chen, D. Jiang, X. Song // Journal of Materials Research and Technology. – 2024. – Vol. 29. – P. 4216–4231. – doi: 10.1016/j.jmrt.2024.02.135.
  17. Effects of Nb content on the microstructure and properties of CoCrFeMnNiNbx high-entropy alloy coatings by laser cladding / M. Feng, T. Lin, G. Lian, C. Chen, X. Huang // Journal of Materials Research and Technology. – 2024. – Vol. 28. – P. 3835–3848. – doi: 10.1016/j.jmrt.2024.01.002.
  18. Wear of Mo- and W-alloyed TiAlN coatings during high-speed turning of stainless steel / M. Moreno, J.M. Andersson, M.P. Johansson-Jöesaar, B.E. Friedrich, R. Boyd, I.C. Schramm, L.J.S. Johnson, M. Odén, L. Rogström // Surface and Coatings Technology. – 2022. – Vol. 446. – P. 128786. – doi: 10.1016/j.surfcoat.2022.128786.
  19. B and Ce composite microalloying for improving high-temperature oxidation resistance of 254SMO super-austenite stainless steel / Z. Li, J. Ren, J. Ma, C. Zhang, W. Wang, Y. Li, N. Dong, P. Han // Intermetallics. – 2024. – Vol. 174. – P. 108457. – doi: 10.1016/j.intermet.2024.108457.
  20. Анализ современной ситуации в области применения электронно-пучковой обработки различных сплавов. Ч. 1 / Д.В. Комаров, С.В. Коновалов, Д.В. Жуков, И.С. Виноградов, И.А. Панченко // Ползуновский вестник. – 2021. – № 4. – C. 129–139. – doi: 10.25712/ASTU.2072-8921.2021.04.017.
  21. Non-vacuum electron-beam boriding of lowcarbon steel / I.A. Bataev, A.A. Bataev, M.G. Golkovsky, A.Yu. Teplykh, V.G. Burov, S.V. Veselov // Surface and Coatings Technology. – 2012. – Vol. 207. – P. 245–253. – doi: 10.1016/j.surfcoat.2012.06.081.
  22. Cutting and welding of high-strength steels using non-vacuum electron beam as a universal tool for material processing / T. Hassel, N. Murray, G. Klimov, A. Beniyash // World Journal of Engineering and Technology. – 2016. – Vol. 4. – P. 598–607. – doi: 10.4236/wjet.2016.44056.
  23. Марочник сталей и сплавов / под ред. А.С. Зубченко. – 2-е изд., перераб. и доп. – М.: Машиностроение, 2003. – 784 c. – ISBN 978-5-94275-582-9.
  24. ГОСТ Р ИСО 6507-1–2007. Металлы и сплавы. Измерение твердости по Виккерсу. Ч. 1. Метод измерения. – М.: Стандартинформ, 2008. – 16 с.
  25. ГОСТ 6130–71. Металлы. Методы определения жаростойкости: взамен ГОСТ 6130–52: переизд. (сент. 1990 г.) с Изм. № 1. – М.: Изд-во стандартов, 1990. – 14 с.
  26. Rogl P., Korniyenko K., Velikanova T. Boron – Carbon – Niobium // Refractory Metal Systems. – Springer, 2009. – P. 474–498. – doi: 10.1007/978-3-540-88053-0_20.
  27. The crystal structure of trigonal diboron trioxide / G.E. Gurr, P.W. Montgomery, C.D. Knutson, B.T. Gorres // Acta Crystallographica. – 1970. – Vol. 26 (7). – P. 906–915. – doi: 10.1107/S0567740870003369.
  28. Tool steel coatings based on niobium carbide and carbonitride compounds / R.A. Mesquita, C.A. Schuh // Surface and Coatings Technology. – 2012. – Vol. 207. – P. 472–479. – doi: 10.1016/j.surfcoat.2012.07.052.
  29. Улиг Г.Г., Реви Р.У. Коррозия и борьба с ней: введение в коррозионную науку и технику / пер. с англ. А.М. Сухотина. – Л.: Химия, 1989. – 456 с. – ISBN 5-7245-0355-7.
  30. Oxidation mechanism and high-temperature strength of Mo–B–C-coated diamonds in the 700°C–1200 °C temperature range / X. Mao, Q. Meng, S. Wang, S. Huang, M. Yuan, Y. Qiu // Journal of Materials Research and Technology. – 2024. – Vol. 33. – P. 7829–7841. – doi: 10.1016/j.jmrt.2024.10.249.
  31. Effects of Mo and Nb on the microstructure and high temperature oxidation behaviors of CoCrFeNi-based high entropy alloys / T. Wu, L. Yu, G. Chen, R. Wang, Y. Xue, Y. Lu, B. Luan // Journal of Materials Research and Technology. – 2023. – Vol. 27. – P. 1537–1549. – doi: 10.1016/j.jmrt.2023.10.058.

Supplementary files

Supplementary Files
Action
1. JATS XML

Note

Funding

The study was carried out in accordance with the state assignment of the Ministry of Education and Science of the Russian Federation (project FSUN-2023-0009).



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».