Investigation of the process of surface decarburization of steel 20 after cementation and heat treatment

Cover Page

Cite item

Abstract

Introduction. In industry, the method of carburizing with a solid carburizer is used to saturate the surface layer with carbon. In practice, it is necessary to prevent or reduce surface decarburization of steel as much as possible, either by using a protective atmosphere or by heating under conditions in which the oxidation process of the metal surface layer occurs faster than the decarburization process. During decarburization, a ferrite structure is formed in the surface layer, which, under contact loads, reduces the resistance to crack initiation and increases the probability of fatigue failure of the product as a whole. The purpose of this work is to evaluate the effect of heating temperature during carburizing and subsequent hardening, as well as equalizing period, on the depth of the decarburized layer during chemical-thermal treatment of low-carbon steel. Research methods. The chemical composition of the steel as delivered was determined. The analyses were performed using an optical emission spectrometer, model LAVFA18B Spectrolab. For the study, unalloyed hypoeutectoid Steel 20 was selected, with an initial ferrite-pearlite microstructure. The samples had a rectangular shape with average dimensions of 50 mm × 10 mm × 10 mm. Carbon saturation was carried out on one side (from the side of the poured carburizer, while the reverse surface of the samples was protected by a layer of clay). The samples were placed in a metal container, filled with carburizer in a 25–30 mm layer, closed with a lid, and sealed. Carbon saturation was carried out at 900 °C for 4–8 hours. After that, the box with samples was taken out of the furnace and cooled in air. Quenching was carried out in a furnace in air (humidity was not measured) at furnace heating temperatures of T = 780 °C, 850 °C, and 950 °C with a equalizing period of 4.6 h in a laboratory electric resistance furnace with a chamber volume of V = 22 dm³. Metallographic examination and microhardness measurements were performed. Results and discussion. During the experiments, it was noted that the heating temperature for carburizing and quenching plays an important role in decarburization. At a temperature of 700 °C, the decarburization phenomenon was not observed, indicating that the decarburization reaction did not occur below this temperature. When the temperature exceeds 750 °C, the samples exhibit obvious decarburization, and the ferrite structure is columnar, oriented perpendicular to the decarburized surface. A partial decarburized layer appears in the samples at 850 °C, and the thickness of the full decarburized layer decreases. Above 900 °C, the sample mainly shows a partial decarburized layer because, at this temperature, the steel structure is fully austenitic. Above 1,000 °C, the layer thickness increases rapidly, showing exponential growth. The experiments also demonstrated the effect of heating and equalizing periods on the depth of the decarburized layer. The presented results will be useful in chemical-thermal treatment of products requiring high surface hardness.

About the authors

Yulia I. Karlina

National Research Moscow State University of Civil Engineering

Author for correspondence.
Email: jul.karlina@gmail.com
ORCID iD: 0000-0001-6519-561X
SPIN-code: 3455-0836
Scopus Author ID: 57210311769
ResearcherId: AAP-4915-2021

Ph.D. (Engineering), Scientific associate

Russian Federation, 26 Yaroslavskoe Shosse, Moscow, 129337, Russian Federation

Vladimir Yu. Konyukhov

Irkutsk National Research Technical University; Cherepovets State University

Email: konyukhov_vyu@mail.ru
ORCID iD: 0000-0001-9137-9404
SPIN-code: 3445-3288
Scopus Author ID: 56769690400
ResearcherId: JTT-2083-2023

Ph.D. (Engineering), Professor

Russian Federation, 83 Lermontova str., Irkutsk, 664074, Russian Federation; 5 Lunacharsky pr., Cherepovets, 162600, Russian Federation

Tatiana A. Oparina

Irkutsk National Research Technical University

Email: martusina2@yandex.ru
ORCID iD: 0000-0002-9062-6554
SPIN-code: 5697-2740
Scopus Author ID: 57222118655
ResearcherId: KKT-9622-2024

Assistant

Russian Federation, 83 Lermontova str., Irkutsk, 664074, Russian Federation

References

  1. Лахтин Ю.М. Металловедение и термическая обработка металлов. – М.: Металлургия, 1983. – 359 с.
  2. Лахтин Ю.М., Арзамасов Б.Н. Химико-термическая обработка металлов. – М.: Металлургия, 1985. – 256 с.
  3. Choi S., Zwaag S.V.D. Prediction of decarburized ferrite depth of hypoeutectoid steel with simultaneous oxidation // ISIJ International. – 2012. – Vol. 52 (4). – P. 549–558. – doi: 10.2355/isijinternational.52.549.
  4. Surface decarburization behavior and its adverse effects of air-cooled forging steel C70S6 for fracture splitting connecting rod / C.L. Zhang, L.Y. Xie, G.L. Liu, L. Chen, Y.Z. Liu, J. Li // Metals and Materials International. – 2016. – Vol. 22 (5). – P. 836–841. – doi: 10.1007/s12540-016-5657-x.
  5. Carroll R.I., Beynon J.H. Decarburisation and rolling contact fatigue of a rail steel // Wear. – 2006. – Vol. 260 (4–5). – P. 523–537. – doi: 10.1016/j.wear.2005.03.005.
  6. Enhanced bending fatigue resistance of a 50CrMnMoVNb spring steel with decarburized layer by surface spinning strengthening / C.X. Ren, D.Q.Q. Wang, Q. Wang, Y.S. Guo, Z.J. Zhang, C.W. Shao, H.J. Yang, Z.F. Zhang // International Journal of Fatigue. – 2019. – Vol. 124. – P. 277–287. – doi: 10.1016/j.ijfatigue.2019.03.014.
  7. Effects of decarburization on the wear resistance and damage mechanisms of rail steels subject to contact fatigue / X.J. Zhao, J. Guo, H.Y. Wang, Z.F. Wen, Q.Y. Liu, G.T. Zhao, W.J. Wang // Wear. – 2016. – Vol. 364–365. – P. 130–143. – doi: 10.1016/j.wear.2016.07.013.
  8. Phase transformation behaviors of medium carbon steels produced by twin roll casting and compact strip production processes / S. Li, H. Feng, S. Wang, J. Gao, H. Zhao, H. Wu, S. Xu, Q. Feng, H. Li, X. Liu, G. Wu // Materials. – 2023. – Vol. 16 (5). – P. 1980. – doi: 10.3390/ma16051980.
  9. Hot tensile and fracture behavior of 35CrMo steel at elevated temperature and strain rate / Z. Xiao, Y. Huang, H. Liu, S. Wang // Metals. – 2016. – Vol. 6 (9). – P. 210. – doi: 10.3390/met6090210.
  10. Protective bauxite-based coatings and their anti-decarburization performance in spring steel at high temperatures / X. Wang, W. Lianqi, X. Zhou, X. Zhang, Y. Shufeng, Y. Chen // Journal of Materials Engineering and Performance. – 2013. – Vol. 22. – P. 753–758. – doi: 10.1007/s11665-012-0309-x.
  11. Chen Y.R., Zhang F., Liu Y. Decarburization of 60Si2MnA in 20 Pct H2O-N2 at 700 °C to 900 °C // Metallurgical and Materials Transactions A. – 2020. – Vol. 51. – P. 1808–1821.
  12. Chen Y.R., Zhang F. New development in decarburization research and its application to spring steels // High Temperature Corrosion of Mater. – 2023. – Vol. 100. – P. 109–143. – doi: 10.1007/s11085-023-10181-3.
  13. Gildersleeve M.J. Relationship between decarburisation and fatigue strength of through hardened and carburising steels // Materials Science and Technology. – 1991. – Vol. 7 (4). – P. 307–310.
  14. ГОСТ Р 54566–2011. Стандартные методы испытаний для оценки глубины обезуглероженного слоя. – М.: Стандартинформ, 2014. – 15 с.
  15. Surface decarburization of the hypo-eutectoid carbon steel C45 during annealing in steady air at temperatures T > AC1 / M. Zorc, A. Nagode, J. Burja, B. Kosec, B. Zorc // Metals. – 2018. – Vol. 8 (6). – P. 425. – DOI:  10.3390/met8060425.
  16. Степанкин И.Н., Поздняков Е.П. К вопросу изготовления мелкоразмерного штампового инструмента из экономно легированных сталей с диффузионным упрочнением поверхностного слоя // Кузнечно-штамповочное производство. Обработка материалов давлением. – 2015. – № 9. – C. 25–32.
  17. Çalik A. Effect of cooling rate on hardness and microstructure of AISI 1020, AISI 1040 and AISI 1060 Steels // International Journal of Physical Sciences. – 2009. – Vol. 4 (9). – P. 514–518.
  18. Examination of minimum quantity lubrication performance in the hard turning of AISI/SAE 1060 high-carbon steel / B. Ramesh, S.R. Vempati, C. Manjunath, A.H. Elsheikh // Journal of Materials Engineering and Performance. – 2024. – Vol. 34 (13). – P. 136861–13696. – doi: 10.1007/s11665-024-10070-z.
  19. Performance analysis of heat treated AISI 1020 steel samples on the basis of various destructive mechanical testing and microstructural behavior / S. Dewangan, N. Mainwal, M. Khandelwal, P.S. Jadhav // Australian Journal of Mechanical Engineering. – 2022. – Vol. 20 (1). – P. 74–87. – doi: 10.1080/14484846.2019.1664212.
  20. Chen R.Y., Yeun W.Y.D. Review of the high-temperature oxidation of iron and carbon steels in air or oxygen // Oxidation of Metals. – 2003. – Vol. 59 (5). – P. 433–468. – doi: 10.1023/A:1023685905159.
  21. Voort G.F.V. Understanding and measuring decarburization // AM&P Technical Articles. – 2015. – Vol. 173 (2). – P. 22–27.
  22. Application of plasma surface quenching to reduce rail side wear / M.V. Konstantinova, A.E. Balanovskiy, V.E. Gozbenko, S.K. Kargapoltsev, A.I. Karlina, M.G. Shtayger, E.A. Guseva, B.O. Kuznetsov // IOP Conference Series: Materials Science and Engineering. – 2019. – Vol. 560 (1). – P. 012146. – doi: 10.1088/1757-899X/560/1/012146.
  23. Change in the properties of rail steels during operation and reutilization of rails / K. Yelemessov, D. Baskanbayeva, N.V. Martyushev, V.Y. Skeeba, V.E. Gozbenko, A.I. Karlina // Metals. – 2023. – Vol. 13. – P. 1043. – doi: 10.3390/met13061043.
  24. Investigation of macro and micro structures of compounds of high-strength rails implemented by contact butt welding using burning-off / M.G. Shtayger, A.E. Balanovskiy, S.K. Kargapoltsev, V.E. Gozbenko, A.I. Karlina, Yu.I. Karlina, A.S. Govorkov, B.O. Kuznetsov // IOP Conference Series: Materials Science and Engineering. – 2019. – Vol. 560 (1). – P. 012190. – doi: 10.1088/1757-899X/560/1/012190.
  25. Surface hardening of structural steel by cathode spot of welding arc / A.E. Balanovskiy, M.G. Shtayger, A.I. Karlina, S.K. Kargapoltsev, V.E. Gozbenko, Yu.I. Karlina, A.S. Govorkov, B.O. Kuznetsov // IOP Conference Series: Materials Science and Engineering. – 2019. – Vol. 560 (1). – P. 012138. – doi: 10.1088/1757-899X/560/1/012138.
  26. Hybrid processing: the impact of mechanical and surface thermal treatment integration onto the machine parts quality / V.Yu. Skeeba, V.V. Ivancivsky, A.V. Kutyshkin, K.A. Parts // IOP Conference Series: Materials Science and Engineering. – 2016. – Vol. 126 (1). – P. 012016. – doi: 10.1088/1757-899x/126/1/012016.
  27. Research on the possibility of lowering the manufacturing accuracy of cycloid transmission wheels with intermediate rolling elements and a free cage / E.A. Efremenkov, N.V. Martyushev, V.Yu. Skeeba, M.V. Grechneva, A.V. Olisov, A.D. Ens // Applied Sciences. – 2022. – Vol. 12 (1). – P. 5. – doi: 10.3390/app12010005.
  28. Martyushev N.V., Skeeba V.Yu. The method of quantitative automatic metallographic analysis // Journal of Physics: Conference Series. – 2017. – Vol. 803 (1). – P. 012094. – doi: 10.1088/1742-6596/803/1/012094.
  29. Skeeba V.Yu., Ivancivsky V.V. Reliability of quality forecast for hybrid metal-working machinery // IOP Conference Series: Earth and Environmental Science. – 2018. – Vol. 194 (2). – P. 022037. – doi: 10.1088/1755-1315/194/2/022037.
  30. Defining efficient modes range for plasma spraying coatings / E.A. Zverev, V.Y. Skeeba, P.Y. Skeeba, I.V. Khlebova // IOP Conference Series: Earth and Environmental Science. – 2017. – Vol. 87 (8). – P. 082061. – doi: 10.1088/1755-1315/87/8/082061.
  31. Скиба В.Ю. Гибридное технологическое оборудование: повышение эффективности ранних стадий проектирования комплексированных металлообрабатывающих станков // Обработка металлов (технология, оборудование, инструменты). – 2019. – Т. 21, № 2. – C. 62–83. – doi: 10.17212/1994-6309-2019-21.2-62-83.
  32. Исследование процесса автоматического управления сменой полярности тока в условиях гибридной технологии электрохимической обработки коррозионностойких сталей / М.А. Борисов, Д.В. Лобанов, А.С. Янюшкин, В.Ю. Скиба // Обработка металлов (технология, оборудование, инструменты). – 2020. – Т. 22, № 1. – С. 6–15. – doi: 10.17212/1994-6309-2020-22.1-6-15.
  33. Influence of welding regimes on structure and properties of steel 12KH18N10T weld metal in different spatial positions / R.A. Mamadaliev, P.V. Bakhmatov, N.V. Martyushev, V.Y. Skeeba, A.I. Karlina // Metallurgist. – 2022. – Vol. 65 (11–12). – P. 1255–1264. – doi: 10.1007/s11015-022-01271-9.
  34. Plasma-arc surface modification of metals in a liquid medium / A.E. Balanovsky, M.G. Shtayger, V.V. Kondrat'ev, V. Van Huy, A.I. Karlina // IOP Conference Series: Materials Science and Engineering. – 2018. – Vol. 411 (1). – P. 012013. – doi: 10.1088/1757-899X/411/1/012013.
  35. Karlina A.I., Karlina Y.I., Gladkikh V.A. Studying the microstructure, phase composition, and wear resistance of alloyed layers after laser surface melting of low-carbon steel 20 // Metallurgist. – 2024. – Vol. 68 (5). – P. 757–766. – doi: 10.1007/s11015-024-01782-7.
  36. Study of wear of an alloyed layer with chromium carbide particles after plasma melting / A.I. Karlina, Y.I. Karlina, V.V. Kondratiev, R.V. Kononenko, A.D. Breki // Crystals. – 2023. – Vol. 13 (12). – P. 1696. – doi: 10.3390/cryst13121696.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».