Numerical and experimental investigation of heat transfer augmentation in roughened pipes

Cover Page

Cite item

Abstract

Introduction. In many technical applications, such as thermal energy systems, chemical processing, power production, and HVAC, efficient heat transfer (HT) is essential. Research on improving HT performance in circular pipes is still crucial, especially when it comes to changes that cause thermal boundary layers to be disrupted and turbulence to grow. Purpose of the work: The purpose of this work is to thoroughly examine how convective heat transfer can be improved in circular pipes with purposefully roughened surfaces. It focuses on how surface roughness, flow pulsations, Reynolds number (Re), and heat flow rate (Q) affect thermal performance. Methods of investigation. A combination of experimental and numerical methods is employed to assess the thermo-fluid dynamics inside the pipe. Lab-scale experiments and computational fluid dynamics (CFD) simulations are used to investigate temperature distribution, velocity and pressure fields, turbulent kinetic energy (TKE), vorticity, eddy viscosity, local heat transfer coefficient (h), and Nusselt number (Nu). Additionally, sinusoidal pulsations are introduced at the inlet and the outlet, with regular oscillations in frequency (f) and amplitude (A), over a turbulent flow range (6,753 ≤ Re ≤ 31,000). Results and discussion. The results show that surface roughness enhances HT by significantly increasing turbulence and disrupting the thermal boundary layer. TKE becomes a significant factor when there is a strong correlation between higher HT coefficients and rising turbulence intensity. HT performance is further improved by introducing flow pulsations; downstream pulsation increases Nu by 20–22% and upstream pulsing by 16–19%. The outcomes demonstrate how effectively controlled flow pulsations and surface roughness combine to optimize heat transfer. This collaborative approach holds great potential for compact and highly efficient thermal system designs in industrial environments.

About the authors

Siddhanath Nishandar

Department of Mechanical Engineering, Government College of Engineering, Karad, Shivaji University

Email: siddhant.nishandar04@gmail.com
ORCID iD: 0000-0001-6190-3412
Scopus Author ID: 57211394793

Assistant Professor

India, Kolhapur, Maharashtra 445414, India

Ashok Pise

Department of Mechanical Engineering, Government College of Engineering, Karad, Shivaji University

Email: ashokpise@gmail.com
ORCID iD: 0009-0003-0276-8996
Scopus Author ID: 55314868800

Ph.D. (Engineering), Professor

India, Kolhapur, Maharashtra 445414, India

Pramodkumar Bagade

Department of Mechanical Engineering, TSSM’s Bhivarabai Sawant College of Engineering and Research (BSCOER)

Author for correspondence.
Email: pramodbagade@gmail.com
ORCID iD: 0000-0002-4069-1542
Scopus Author ID: 56194870200
ResearcherId: AAC-7631-2020
https://www.researchgate.net/profile/Pramod-Bagade

Ph.D. (Engineering), Professor

India, Narhe, Pune, Maharashtra 445414, India

References

  1. Ye Q., Zhang Y., Wei J. A comprehensive review of pulsating flow on heat transfer enhancement // Applied Thermal Engineering. – 2021. – Vol. 196. – P. 117275. – doi: 10.1016/j.applthermaleng.2021.117275.
  2. Numerical investigation on flow and heat transfer of pulsating flow in various ribbed channels / B. Yang, T. Gao, J. Gong, J. Li // Applied Thermal Engineering. – 2018. – Vol. 145. – P. 576–589. – doi: 10.1016/j.applthermaleng.2018.09.041.
  3. Experimental and numerical study on heat transfer enhancement by flow-induced vibration in pulsating flow / D. Duan, Y. Cheng, M. Ge, W. Bi, P. Ge, X. Yang // Applied Thermal Engineering. – 2022. – Vol. 207. – P. 118171. – doi: 10.1016/j.applthermaleng.2022.118171.
  4. An experimental investigation on heat transfer performance of pulsating heat pipe / F. Shang, S. Fan, Q. Yang, J. Liu // Journal of Mechanical Science and Technology. – 2020. – Vol. 34. – P. 425–433. – doi: 10.1007/s12206-019-1241-x.
  5. Ganapathy V. Steam generators and waste heat boilers: For process and plant engineers. – Boca Raton: CRC Press, 2014. – 539 p. – ISBN 9781138077683.
  6. Zohuri B. Application of compact heat exchangers for combined cycle driven efficiency in next generation nuclear power plants: A novel approach. – Cham: Springer Nature Link, 2015. – 366 p. – eISBN 978-3-319-23537-0. – doi: 10.1007/978-3-319-23537-0.
  7. Trigeneration in the food industry / J. Bassols, B. Kuckelkorn, J. Langreck, R. Schneider, H. Veelken // Applied Thermal Engineering. – 2002. – Vol. 22 (6). – P. 595–602. – doi: 10.1016/S1359-4311(01)00111-9.
  8. Šalic A., Tušek A., Zelic B. Application of microreactors in medicine and biomedicine // Journal of Applied Biomedicine. – 2012. – Vol. 10 (3). – P. 137–153. – doi: 10.2478/v10136-012-0011-1.
  9. Review on thermal energy storage with phase change materials and applications / A. Sharma, V. Tyagi, C. Chen, D. Buddhi // Renewable and Sustainable Energy Reviews. – 2009. – Vol. 13 (2). – P. 318–345. – doi: 10.1016/j.rser.2007.10.005.
  10. Ameen A. Refrigeration and air conditioning. – PHI Learning Pvt. Ltd., 2006. – 512 p. – ISBN 8120326717. – ISBN 978-8120326712.
  11. Parametric studies on automotive radiators / C. Oliet, A. Oliva, J. Castro, C. Pérez-Segarra // Applied Thermal Engineering. – 2007. – Vol. 27 (11). – P. 2033–2043. – doi: 10.1016/j.applthermaleng.2006.12.006.
  12. Encyclopedia of agricultural, food, and biological engineering / ed. by D. Heldman and C.E. Moraru. – 2nd ed. – Boca Raton: CRC Press, 2010. – doi: 10.1201/9780429257599.
  13. Coker A.K. Introduction // Coker A.K. Petroleum refining design and application handbook. Vol. 1. – John Wiley & Sons, 2018. – Ch. 1. – ISBN 978-1-119-25710-3. – doi: 10.1002/9781119257110.ch1.
  14. Coker A.K. Thermodynamic properties of petroleum and petroleum fractions // Coker A.K. Petroleum refining design and applications handbook. Vol. 1. – John Wiley & Sons, 2018. – Ch. 4. – P. 63–110. – doi: 10.1002/9781119257110.ch4.
  15. Beddoes J., Bibby M. Principles of metal manufacturing processes. – Butterworth-Heinemann, 1999. – doi: 10.1016/B978-0-340-73162-8.X5000-0.
  16. Accurately predicting turbulent heat transfer over rough walls: a review of measurement equipment and methods / W. Abu Rowin, Y. Xia, S. Wang, N. Hutchins // Experiments in Fluids. – 2024. – Vol. 65. – P. 86. – doi: 10.1007/s00348-024-03812-1.
  17. Qu W., Ma H.B. Theoretical analysis of startup of a pulsating heat pipe // International Journal of Heat and Mass Transfer. – 2007. – Vol. 50 (11–12). – P. 2309–2316. – doi: 10.1016/j.ijheatmasstransfer.2006.10.043.
  18. Study on heat transfer characteristics of ethane pulsating heat pipe in middle-low temperature region / X. Chen, Y. Lin, S. Shao, W. Wu // Applied Thermal Engineering. – 2019. – Vol. 152. – P. 697–705. – doi: 10.1016/j.applthermaleng.2019.02.125.
  19. Numerical investigation of heat transfer in structured rough microchannels subjected to pulsed flow / S. Singh, S.K. Singh, H.S. Mali, R. Dayal // Applied Thermal Engineering. – 2021. – Vol. 197. – P. 117361. – doi: 10.1016/j.applthermaleng.2021.117361.
  20. Turbulent flow field and heat transfer in a heated circular channel under a reciprocating motion / H.-W. Wu, R. Lay, C. Lau, W.-J. Wu // Heat and Mass Transfer. – 2004. – Vol. 40 (10). – P. 769–778. – doi: 10.1007/s00231-003-0464-6.
  21. Lin T.-Y., Kandlikar S.G. An experimental investigation of structured roughness effect on heat transfer during single-phase liquid flow at microscale // Journal of Heat Transfer. – 2012. – Vol. 134. – P. 101701. – doi: 10.1115/1.4006844.
  22. Effects of surface roughness in microchannel with passive heat transfer enhancement structures / H. Lu, M. Xu, L. Gong, X. Duan, J.C. Chai // International Journal of Heat and Mass Transfer. – 2020. – Vol. 148. – P. 119070. – doi: 10.1016/j.ijheatmasstransfer.2019.119070.
  23. Croce G., D’;agaro P., Nonino C. Three-dimensional roughness effect on microchannel heat transfer and pressure drop // International Journal of Heat and Mass Transfer. – 2007. – Vol. 50 (25). – P. 5249–5259. – doi: 10.1016/j.ijheatmasstransfer.2007.06.021.
  24. Gerrard J.H. An experimental investigation of pulsating turbulent water flow in a tube // Journal of Fluid Mechanics. – 1971. – Vol. 46 (1). – P. 43–64. – doi: 10.1017/S0022112071000399.
  25. Clamen M., Minton P. An experimental investigation of flow in an oscillating pipe // Journal of Fluid Mechanics. – 1977. – Vol. 81 (3). – P. 421–431. – doi: 10.1017/S0022112077002146.
  26. Shemer L., Wygnanski I., Kit E. Pulsating flow in a pipe // Journal of Fluid Mechanics. – 1985. – Vol. 153. – P. 313–337. – doi: 10.1017/S0022112085001276.
  27. Eckmann D.M., Grotberg J.B. Experiments on transition to turbulence in oscillatory pipe flow // Journal of Fluid Mechanics. – 1991. – Vol. 222. – P. 329–350. – doi: 10.1017/S002211209100112X.
  28. Pressure and velocity distributions in pulsating turbulent pipe flow. Part 2. Experimental investigations / M. Ohmi, T. Usui, O. Tanaka, M. Toyoma // Bulletin of JSME. – 1976. – Vol. 19 (134). – P. 951–957. – doi: 10.1299/jsme1958.19.951.
  29. Iguchi M., Park G., Koh Y. The structure of turbulence in pulsatile pipe flows // KSME Journal. – 1993. – Vol. 7. – P. 185–193. – doi: 10.1007/BF02970963.
  30. Hydrodynamics and heat transfer with pulsating fluid flow in tubes / L. Genin, A. Koval, S. Manachkha, V. Sviridov // Thermal Engineering. – 1992. – Vol. 39 (5). – P. 251–255.
  31. Einav S., Sokolov M. An experimental study of pulsatile pipe flow in the transition range // Journal of Biomechanical Engineering. – 1993. – Vol. 115 (4A). – P. 404–411. – doi: 10.1115/1.2895504.
  32. Carvalho Jr J.A. Behavior of solid particles in pulsating flows // Journal of Sound and Vibration. – 1995. – Vol. 185 (4). – P. 581–593. – doi: 10.1006/jsvi.1995.0402.
  33. Lu P.-C. Discussion: “Heat Transfer for Pulsating Laminar Duct Flow” (Siegel, R., and Perlmutter, M., 1962, ASME J. Heat Transfer, 84, pp. 111–122) // Journal of Heat Transfer. – 1962. – Vol. 84. – P. 111–122. – doi: 10.1115/1.3684308.
  34. Faghri M., Javdani K., Faghri A. Heat transfer with laminar pulsating flow in a pipe // Letters in Heat and Mass Transfer. – 1979. – Vol. 6 (4). – P. 259–270. – doi: 10.1016/0094-4548(79)90013-4.
  35. Krishnan K.N., Sastri V.M.K. Heat transfer in laminar pulsating flows of fluids with temperature dependent viscosities // Wärme- und Stoffübertragung. – 1989. – Vol. 24 (1). – P. 27–42. – doi: 10.1007/BF01599503.
  36. Cho H., Hyun J. Numerical solutions of pulsating flow and heat transfer characteristics in a pipe // International Journal of Heat and Fluid Flow. – 1990. – Vol. 11 (4). – P. 321–330. – doi: 10.1016/0142-727X(90)90056-H.
  37. Kim S.Y., Kang B.H., Hyun J.M. Heat transfer from pulsating flow in a channel filled with porous media // International Journal of Heat and Mass Transfer. – 1994. – Vol. 37 (14). – P. 2025–2033. – doi: 10.1016/0017-9310(94)90304-2.
  38. Gül H. Experimental investigation of heat transfer in oscillating circular pipes: High frequencies and amplitudes // Scientific Research and Essays. – 2013. – Vol. 8 (13). – P. 524–531. – doi: 10.5897/SRE12.721.
  39. Dittus F., Boelter L. Heat transfer in automobile radiators of the tubular type // International Communications in Heat and Mass Transfer. – 1985. – Vol. 12 (1). – P. 3–22. – doi: 10.1016/0735-1933(85)90003-X.
  40. Winterton R.H.S. Technical notes: Where did the dittus and boelter equation come from? // International Journal of Heat and Mass Transfer. – 1998. – Vol. 41 (4–5). – P. 809–810. – doi: 10.1016/S0017-9310(97)00177-4.
  41. McAdams W.H. Heat transmission. – 3rd ed. – New York: McGraw-Hill, 1954. – ISBN 0070447993. – ISBN 9780070447998.
  42. Bagade P.M., Bhumkar Y.G., Sengupta T.K. An improved orthogonal grid generation method for solving flows past highly cambered aerofoils with and without roughness elements // Computers and Fluids. – 2014. – Vol. 103. – P. 275–289. – doi: 10.1016/j.compfluid.2014.07.031.
  43. Experimental study of heat transfer in pulsating turbulent flow in a pipe / E.A. Elshafei, M. Safwat Mohamed, H. Mansour, M. Sakr // International Journal of Heat and Fluid Flow. – 2008. – Vol. 29 (4). – P. 1029–1038. – doi: 10.1016/j.ijheatfluidflow.2008.03.018.
  44. Cebeci T., Bradshaw P. Physical and computational aspects of convective heat transfer. – New York: Springer, 2012. – (Springer Study Edition). – doi: 10.1007/978-1-4612-3918-5.
  45. Kays W., Crawford M., Weigand B. Convective heat and mass transfer. – McGraw-Hill, 2005. – (McGraw-Hill Series in Mechanical Engineering). – ISBN 0072468769. – ISBN 978-0072468762.
  46. Predicting the drag of rough surfaces / D. Chung, N. Hutchins, M. Schultz, K. Flack // Annual Review of Fluid Mechanics. – 2021. – Vol. 53. – P. 439–471. – doi: 10.1146/annurev-fluid-062520-115127.
  47. Alfarawi S., Abdel-Moneim S.A., Bodalal A. Experimental investigations of heat transfer enhancement from rectangular duct roughened by hybrid ribs // International Journal of Thermal Sciences. – 2017. – Vol. 118. – P. 123–138. – doi: 10.1016/j.ijthermalsci.2017.04.017.
  48. Turbulent flow over transitionally rough surfaces with varying roughness densities / M. MacDonald, L. Chan, D. Chung, N. Hutchins, A. Ooi // Journal of Fluid Mechanics. – 2016. – Vol. 804. – P. 130–161. – doi: 10.1017/jfm.2016.459.
  49. The influence of surface roughness on heat transfer in the transitional flow regime / M. Everts, S.R. Ayres, F.A. Mulock Houwer, C.P. Vanderwagen, N.M. Kotze, J.P. Meyer // Proceedings of the 15th International Heat Transfer Conference. – Begellhouse, 2014. – doi: 10.1615/IHTC15.cnv.008338.
  50. Meyer J., Olivier J. Transitional flow inside enhanced tubes for fully developed and developing flow with different types of inlet disturbances: Part I – Adiabatic pressure drops // International Journal of Heat and Mass Transfer. – 2011. – Vol. 54 (7). – P. 1587–1597. – doi: 10.1016/j.ijheatmasstransfer.2010.11.027.
  51. Meyer J., Olivier J. Transitional flow inside enhanced tubes for fully developed and developing flow with different types of inlet disturbances: Part II – Heat transfer // International Journal of Heat and Mass Transfer. – 2011. – Vol. 54 (7). – P. 1598–1607. – doi: 10.1016/j.ijheatmasstransfer.2010.11.026.
  52. The influence of artificial roughness shape on heat transfer enhancement: Corrugated tubes, dimpled tubes and wire coils / A. García, J. Solano, P. Vicente, A. Viedma // Applied Thermal Engineering. – 2012. – Vol. 35. – P. 196–201. – doi: 10.1016/j.applthermaleng.2011.10.030.
  53. Mousa M.H., Miljkovic N., Nawaz K. Review of heat transfer enhancement techniques for single phase flows // Renewable and Sustainable Energy Reviews. – 2021. – Vol. 137. – P. 110566. – doi: 10.1016/j.rser.2020.110566.
  54. Everts M., Meyer J.P. Heat transfer of developing and fully developed flow in smooth horizontal tubes in the transitional flow regime // International Journal of Heat and Mass Transfer. – 2018. – Vol. 117. – P. 1331–1351. – doi: 10.1016/j.ijheatmasstransfer.2017.10.071.
  55. Effects of flow pulsation and surface geometry on heat transfer performance in a channel with teardrop-shaped dimples measured by transient technique / S. Kobayashi, K. Inokuma, A. Murata, K. Iwamoto // ASME Journal of Heat and Mass Transfer. – 2024. – Vol. 146. – P. 072001. – doi: 10.1115/1.4065117.
  56. Abdelfattah M., Aziz M.A., Maghrabie H.M. Numerical analysis of heat transfer and fluid flow structures of jet impingement on a flat plate with different shapes of roughness elements // Numerical Heat Transfer, Part A: Applications. – 2024. – P. 1–26. – doi: 10.1080/10407782.2024.2379032.
  57. Ansys Fluent Theory Guide. – ANSYS, Inc., 2021.
  58. Nikuradse J. Laws of flow in rough pipes. – NACA, 1950. – 62 p. – (NACA Technical Memorandums; NACA-TM-1292).
  59. Cebeci T., Bradshaw P. Momentum transfer in boundary layers. – Washington: Hemisphere Pub. Corp., 1977. – 407 p. – ISBN 0070103003. – ISBN 9780070103009.
  60. Computational modelling and analysis of heat transfer enhancement in straight circular pipe with pulsating flow / S.V. Nishandar, A.T. Pise, P.M. Bagade, M.U. Gaikwad, A. Singh // International Journal on Interactive Design and Manufacturing (IJIDeM). – 2024. – Vol. 19 (3). – P. 1951–1969. – doi: 10.1007/s12008-024-01907-x.
  61. Двиведи Р., Соматкар А., Чинчаникар С. Моделирование и оптимизация процесса накатывания роликом Al6061-T6 для достижения минимального отклонения от круглости, минимальной шероховатости поверхности и повышения ее микротвердости // Обработка металлов (технология, оборудование, инструменты). – 2024. – Т. 26, № 3. – С. 52–65. – doi: 10.17212/1994-6309-2024-26.3-52-65.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».