Information properties of vibroacoustic emission in diagnostic systems for cutting tool wear
- Authors: Zakovorotny V.L.1, Gvindjiliya V.E.1, Kislov K.V.1
-
Affiliations:
- Don State Technical University
- Issue: Vol 27, No 3 (2025)
- Pages: 50-70
- Section: Articles
- URL: https://bakhtiniada.ru/1994-6309/article/view/308841
- DOI: https://doi.org/10.17212/1994-6309-2025-27.3-50-70
- ID: 308841
Cite item
Abstract
Introduction. This paper is devoted to the development of a methodology for diagnosing cutting tool wear based on the analysis of vibroacoustic emission signals. Two tasks are addressed. Firstly, the information feature space related to wear is constructed. Secondly, within this space, decision rules are defined that allow division into separate clusters according to wear levels. Since the construction of the information feature space (IFS) methods is of primary importance in these procedures, the purpose of this work is to determine the regularities of changes in the frequency characteristics of the dynamic cutting system caused by wear development and to construct, on this basis, a rational information space for diagnosing tool wear. Method and methodology. The study is based on mathematical modeling results of a perturbed dynamic cutting system to determine the information feature space representing tool wear. Methods for determining the parameters of information signal parameters (ISPs) are proposed, which provide high sensitivity to wear changes. All ISP parameters should be dimensionless and zeroed at zero wear. They must satisfy additional requirements, including noise immunity conditions. Results and discussion. The paper presents results of constructing ISP parameters for vibroacoustic emission analysis in two frequency ranges. In the low-frequency range, limited by the first natural frequencies of interacting subsystems (up to 1.0–1.5 kHz), vibration response parameters (VRP) are determined based on vibration sequences obtained analytically under power perturbations modeled as “white” noise. In the high-frequency range (above 2.0 kHz), information models based on random pulse sequences are proposed. It is shown that the applicability of a particular information feature depends on the conditions. Thus, the developed methodology, mathematical simulation, and digital and field experiments enabled the formation of a rational information space for wear diagnostics, in which known recognition methods can be used to construct decision rules for classifying information according to wear levels.
About the authors
Vilor L. Zakovorotny
Don State Technical University
Email: vzakovorotny@dstu.edu.ru
ORCID iD: 0000-0003-2187-9897
SPIN-code: 1206-4718
ResearcherId: I-2990-2014
D.Sc. (Engineering), Professor
Russian Federation, 1 Gagarin square, Rostov-on-Don, 344000, Russian FederationValery E. Gvindjiliya
Don State Technical University
Author for correspondence.
Email: vvgvindjiliya@donstu.ru
ORCID iD: 0000-0003-1066-4604
SPIN-code: 7399-5066
Scopus Author ID: 57204638971
ResearcherId: JAC-6868-2023
https://donstu.ru/employees/gvindzhiliya-valeriya-enverievna/
Ph.D. (Engineering), Associate Professor
Russian Federation, 1 Gagarin square, Rostov-on-Don, 344000, Russian FederationKirill V. Kislov
Don State Technical University
Email: kislovk@bk.ru
ORCID iD: 0000-0002-5770-2519
SPIN-code: 4487-5304
Scopus Author ID: 57222956902
Ph.D. (Engineering) student
Russian Federation, 1 Gagarin square, Rostov-on-Don, 344000, Russian FederationReferences
- Budak E. Machining process improvement through process twins // Proceedings of 3rd International Conference on the Industry 4.0 Model for Advanced Manufacturing: AMP 2018. – Springer International Publishing, 2018. – P. 164–179. – doi: 10.1007/978-3-319-89563-5_13.
- Zakovorotny V., Gvindjiliya V. Process control synergetics for metal-cutting machines // Journal of Vibroengineering. – 2022. – Vol. 24 (1). – P. 177–189. – doi: 10.21595/jve.2021.22087.
- Zakovorotnyi V.L., Gvindjiliya V.E. Influence of speeds of forming movements on the properties of geometric topology of the part in longitudinal turning // Journal of Manufacturing Processes. – 2024. – Vol. 112. – P. 202–213. – doi: 10.1016/j.jmapro.2024.01.037.
- Заковоротный В.Л., Гвинджилия В.Е. Изучение отображения вибрационных возмущений в геометрии формируемой резанием поверхности при точении // Обработка металлов (технология, оборудование, инструменты). – 2024. – Т. 26, № 2. – С. 107–126. – doi: 10.17212/1994-6309-2024-26.2-107-126.
- Остафьев В.А., Антонюк В.С., Тымчик Г.С. Диагностика процесса металлообработки. – Киев: Тэхника, 1991. – 152 с. – ISBN 5-335-00209-3.
- Козочкин М.П. Многопараметрическая диагностика технологических систем для обработки материалов резанием // Вестник МГТУ «Станкин». – 2014. – № 1 (28). – С. 13–19.
- Грубый С.В. Оптимизация процесса механической обработки и управления режимными параметрами. – М.: МГТУ им. Н.Э. Баумана, 2014. – 149 с. – ISBN 978-5-7038-3935-5.
- Нейронно-сетевое моделирование процесса изнашивания твердосплавного инструмента / Ю.Г. Кабалдин, А.М. Кузьмишина, Д.А. Шатагин, М.С. Аносов // Автоматизация. Современные технологии. – 2021. – Т. 75, № 9. – С. 398–402. – doi: 10.36652/0869-4931-2021-75-9-398-402.
- Разработка цифрового двойника станка с ЧПУ на основе методов машинного обучения / Ю.Г. Кабалдин, Д.А. Шатагин, М.С. Аносов, А.М. Кузьмишина // Вестник Донского государственного технического университета. – 2019. – № 19 (1). – С. 45–55. – doi: 10.23947/1992-5980-2019-19-1-45-55.
- Кабалдин Ю.Г., Шатагин Д.А., Кузьмишина А.М. Разработка цифрового двойника режущего инструмента для механообрабатывающего производства // Известия высших учебных заведений. Машиностроение. – 2019. – № 4. – С. 11–17. – doi: 10.18698/0536-1044-2019-4-11-17.
- Пантюхин О.В., Васин С.А. Цифровой двойник технологического процесса изготовления изделий специального назначения // Станкоинструмент. – 2021. – № 1 (22). – С. 56–59. – doi: 10.22184/2499-9407.2021.22.1.56.58.
- Erkorkmaz K., Altintas Y., Yeung C.-H. Virtual computer numerical control system // CIRP Annals. – 2006. – Vol. 55 (1). – P. 399–402. – doi: 10.1016/S0007-8506(07)60444-2.
- Kilic Z.M., Altintas Y. Generalized mechanics and dynamics of metal cutting operations for unified simulations // International Journal of Machine Tools and Manufacture. – 2016. – Vol. 104. – P. 1–13. – doi: 10.1016/j.ijmachtools.2016.01.006.
- Development of machining strategies for aerospace components, using virtual machining tools / L. Estman, D. Merdol, K.-G. Brask, V. Kalhori, Y. Altintas // New Production Technologies in Aerospace Industry. – Cham: Springer, 2014. – P. 63–68. – (Lecture Notes in Production Engineering). – doi: 10.1007/978-3-319-01964-2_9.
- Козочкин М.П., Сабиров Ф.С., Селезнев А.Е. Виброакустический мониторинг лезвийной обработки заготовок из закаленной стали // Вестник МГТУ «Станкин». – 2018. – № 1 (44). – С. 23–30.
- Барзов А.А., Горелов В.А., Игонькин Б.А. Акустоэлектрическая диагностика процесса резания полимерных композиционных материалов // Авиационная промышленность. – 1986. – № 12. – С. 36.
- Virtual process systems for part machining operations / Y. Altintas, P. Kersting, D. Biermann, E. Budak, B. Denkena // CIRP Annals. – 2014. – Vol. 63 (2). – P. 585–605. – doi: 10.1016/j.cirp.2014.05.007.
- Virtual machine tool / Y. Altintas, C. Brecher, M. Weck, S. Witt // CIRP Annals. – 2005. – Vol. 54 (2). – P. 115–138. – doi: 10.1016/S0007-8506(07)60022-5.
- Soori M., Arezoo B., Habibi M. Virtual machining considering dimensional, geometrical and tool deflection errors in three-axis CNC milling machines // Journal of Manufacturing Systems. – 2014. – Vol. 33 (4). – P. 498–507. – doi: 10.1016/j.jmsy.2014.04.007.
- A novel virtual metrology scheme for predicting machining precision of machine tools / H. Tieng, H.C. Yang, M.H. Hung, F.T. Cheng // IEEE International Conference on Robotics and Automation. – IEEE, 2013. – P. 264–269. – doi: 10.1109/ICRA.2013.6630586.
- Astakhov V.P. Geometry of single-point turning tools and drills: Fundamentals and practical applications. – London: Springer, 2010. – 566 p. – doi: 10.1007/978-1-84996-053-3.
- Konrad H., Isermann R., Oette H.U. Supervision of tool wear and surface quality during end milling operations // IFAC Proceedings Volumes. – 1994. – Vol. 27 (4). – P. 507–513. – doi: 10.1016/S1474-6670(17)46074-5.
- Заковоротный В.Л., Бордачев Е.В. Информационное обеспечение системы динамической диагностики износа режущего инструмента на примере токарной обработки // Проблемы машиностроения и надежности машин. – 1995. – № 3. – С. 95–103.
- Григорьев А.С. Инструментарий системы ЧПУ для диагностики и прогнозирования износа режущего инструмента в реальном времени при токарной обработке // Вестник МГТУ «Станкин». – 2012. – № 1 (18). – С. 39–43.
- Заковоротный В.Л., Гвинджилия В.Е. Эволюция динамической системы резания, обусловленная необратимыми преобразованиями энергии в зоне обработки // СТИН. – 2018. – № 12. – С. 17–25.
- Заковоротный В.Л., Гвинджилия В.Е. Связь самоорганизации динамической системы резания с изнашиванием инструмента // Известия вузов. Прикладная нелинейная динамика. – 2020. – Т. 28, № 1. – С. 46–61. – doi: 10.18500/0869-6632-2020-28-1-46-61.
- Заковоротный В.Л., Гвинджилия В.Е., Кислов К.В. Информационные свойства частотных характеристик динамической системы резания при диагностике износа инструментов // Обработка металлов (технология, оборудование, инструменты). – 2024. – Т. 26, № 3. – С. 114–134. – doi: 10.17212/1994-6309-2024-26.3-114-134.
- A review of sensor system and application in milling process for tool condition monitoring / M. Rizal, J.A. Ghani, M.Z. Nuawi, C.H. Haron // Research Journal of Applied Sciences, Engineering and Technology. – 2014. – Vol. 7 (10). – P. 2083–2097. – doi: 10.19026/rjaset.7.502.
- Teti R. Advanced IT methods of signal processing and decision making for zero defect manufacturing in machining // Procedia CIRP. – 2015. – Vol. 28. – P. 3–15. – doi: 10.1016/j.procir.2015.04.003.
- Bhuiyan M., Choudhury I., Nukman Y. An innovative approach to monitor the chip formation effect on tool state using acoustic emission in turning // International Journal of Machine Tools and Manufacture. – 2012. – Vol. 58. – P. 19–28. – doi: 10.1016/j.ijmachtools.2012.02.001.
- Rehorn A.G., Jiang J., Orban P.E. State-of-the-art methods and results in tool condition monitoring: a review // International Journal of Advanced Manufacturing Technology. – 2005. – Vol. 26. – P. 693–710. – doi: 10.1007/s00170-004-2038-2.
- Jemielniak K., Arrazola P. Application of AE and cutting force signals in tool condition monitoring in micro-milling // CIRP Journal of Manufacturing Science and Technology. – 2008. – Vol. 1 (2). – P. 97–102. – doi: 10.1016/j.cirpj.2008.09.007.
- Zakovorotny V.L., Ladnik I.V., Dhande S.G. A method for characterization of machine-tools dynamic parameters for diagnostic purposes // Journal of Materials Processing Technology. – 1995. – Vol. 53 (3–4). – P. 588–600. – doi: 10.1016/0924-0136(94)01745-M.
- Zakovorotny V.L., Gvindjiliya V.E. Self-organization and evolution in dynamic friction systems // Journal of Vibroengineering. – 2021. – Vol. 23 (6). – P. 1418–1432. – doi: 10.21595/jve.2021.22033.
- Precision manufacturing process monitoring with acoustic emission / D.E. Lee, I. Hwang, C.M.O. Valente, J.F.G. Oliveira, D.A. Dornfeld // International Journal of Machine Tools and Manufacture. – 2006. – Vol. 46 (2). – P. 176–188. – doi: 10.1016/j.ijmachtools.2005.04.001.
- Tool condition monitoring (TCM) – the status of research and industrial application / G. Byrne, D. Dornfeld, I. Inasaki, G. Ketteler, W. Konig, R. Teti // CIRP Annals. – 1995. – Vol. 44 (2). – P. 541–567. – doi: 10.1016/S0007-8506(07)60503-4.
- Dimla D.E. Sensor signals for tool-wear monitoring in metal cutting operations – a review of methods // International Journal of Machine Tools and Manufacture. – 2000. – Vol. 40 (8). – P. 1073–1098. – doi: 10.1016/S0890-6955(99)00122-4.
- Choi Y., Narayanaswami R., Chandra A. Tool wear monitoring in ramp cuts in end milling using the wavelet transform // International Journal of Advanced Manufacturing Technology. – 2004. – Vol. 23 (5–6). – P. 419–428. – doi: 10.1007/s00170-003-1898-1.
- Dolinšek S., Kopac J. Acoustic emission signals for tool wear identification // Wear. – 1999. – Vol. 225–229 (1). – P. 295–303. – doi: 10.1016/s0043-1648(98)00363-9.
- Chiou R.Y., Liang S.Y. Analysis of acoustic emission in chatter vibration with tool wear effect in turning // International Journal of Machine Tools and Manufacture. – 2000. – Vol. 40 (7). – P. 927–941. – doi: 10.1016/S0890-6955(99)00093-0.
- Application of acoustic emission sensor to investigate the frequency of tool wear and plastic deformation in tool condition monitoring / M.S.H. Bhuiyan, I.A. Choudhury, M. Dahari, Y. Nukman, S.Z. Dawal // Measurement. – 2016. – Vol. 92. – P. 208–217. – doi: 10.1016/j.measurement.2016.06.006.
- Siddhpura A., Paurobally R. A review of flank wear prediction methods for tool condition monitoring in a turning process // International Journal of Advanced Manufacturing Technology. – 2013. – Vol. 65. – P. 371–393. – doi: 10.1007/s00170-012-4177-1.
- Tool wear monitoring using naive Bayes classifiers / J. Karandikar, T. McLeay, S. Turner, T. Schmitz // International Journal of Advanced Manufacturing Technology. – 2014. – Vol. 77. – P. 1613–1626. – doi: 10.1007/s00170-014-6560-6.
- Kene A.P., Choudhury S.K. Analytical modeling of tool health monitoring system using multiple sensor data fusion approach in hard machining // Measurement. – 2019. – Vol. 145. – P. 118–129. – doi: 10.1016/j.measurement.2019.05.062.
- Tool condition monitoring techniques in milling process – a review / T. Mohanraj, S. Shankar, R. Rajasekar, N. Sakthivel, A. Pramanik // Journal of Materials Research and Technology. – 2019. – Vol. 9 (1). – P. 1032–1042. – doi: 10.1016/j.jmrt.2019.10.031.
- Kalvoda T., Hwang Y.R. A cutter tool monitoring in machining process using Hilbert–Huang transform // International Journal of Machine Tool and Manufacture. – 2010. – Vol. 50 (5). – P. 495–501. – doi: 10.1016/j.ijmachtools.2010.01.006.
- Заковоротный В.Л., Флек М.Б. Динамика процесса резания. Синергетический подход. – Ростов н/Д.: Терра, 2005. – 880 с. – ISBN 5-98254-055-2.
- Артоболевский И.И., Бобровницкий Ю.И., Генкин М.Д. Введение в акустическую динамику машин. – М.: Наука, 1979. – 296 с.
- Зорев Н.Н., Грановский Г.И., Ларин М.Н. Развитие науки о резании металлов. – М.: Машиностроение, 1967. – 416 с.
- Влияние динамических характеристик процесса резания на шероховатость поверхности детали при токарной обработке / В.Е. Гвинджилия, Е.В. Фоминов, Д.В. Моисеев, Е.И. Гамалеева // Обработка металлов (технология, оборудование, инструменты). – 2024. – Т. 26, № 2. – С. 143–157. – doi: 10.17212/1994-6309-2024-26.2-143-157.
- Макаров А.Д. Оптимизация процессов резания. – М.: Машиностроение, 1976. – 278 с.
Supplementary files
