Influence of cutting speed on pulse changes in the temperature of the front cutter surface during turning of heat-resistant steel 0.17 C-Cr-Ni-0.6 Mo-V

Cover Page

Cite item

Abstract

Introduction. This paper is devoted to the evaluation of the influence of periodic fluctuations of machining mode parameters on the change of the maximum temperature of the front surface of the cutter. Subject of research. Fluctuations of cutting mode parameters are considered as deviations of their values relative to the nominal ones, resulting in periodic changes in the cross-sectional area of the cut layer and the interaction conditions between the chip and the tool’;s front surface, which affect temperature changes in the cutting zone. The purpose of this work is to evaluate the influence of periodic fluctuations of machining mode parameters at different cutting speeds on the variation of the maximum temperature of the cutting tool’;s front surface during turning of heat-resistant steel 0.17 C-Cr-Ni-0.6 Mo-V on a long-life machine without cooling. Method and methodology. The finishing longitudinal turning process of heat-resistant steel 0.17 C-Cr-Ni-0.6 Mo-V on a long-life machine without cooling was investigated. During machining, tool vibrations were measured along three coordinate axes while varying the cutting speed at constant depth of cut and feed. Using digital simulation modeling based on input data obtained from in-situ experiments, the moments in the system dynamics when each cutting mode parameter reaches extreme values due to fluctuations were identified. Deviations of the maximum design temperature from the corresponding nominal value were then determined. Results and discussion. It is established that variations in machining speed change the factors destabilizing the thermal state: at low speeds, the main sources of temperature deviations in the investigated cutting system are moments when extreme values of cutting depth and speed are reached; at higher speeds, fluctuations of cutting depth and feed have the greatest effect. It is revealed that when machining parameters reach extreme values, instantaneous temperature generally increases, and cutting speeds at which such deviations are minimal are identified.

About the authors

Valery E. Gvindjiliya

Don State Technical University

Author for correspondence.
Email: sinedden@yandex.ru
ORCID iD: 0000-0003-1066-4604
SPIN-code: 7399-5066
Scopus Author ID: 57204638971
ResearcherId: JAC-6868-2023
https://donstu.ru/employees/gvindzhiliya-valeriya-enverievna/

Ph.D. (Engineering), Associate Professor

Russian Federation, 1 Gagarin square, Rostov-on-Don, 344000, Russian Federation

Evgeny V. Fominov

Don State Technical University

Email: fominoff83@mail.ru
ORCID iD: 0000-0002-0165-7536
SPIN-code: 7109-4677
Scopus Author ID: 57188653761
ResearcherId: V-77225-2018

Ph.D. (Engineering), Associate Professor

Russian Federation, 1 Gagarin square, Rostov-on-Don, 344000, Russian Federation

Andrey A. Marchenko

Don State Technical University

Email: tobago13@yandex.ru
ORCID iD: 0000-0003-4028-6712
SPIN-code: 8606-4309

Ph.D. (Engineering) student

Russian Federation, 1 Gagarin square, Rostov-on-Don, 344000, Russian Federation

T. V. Lavrenova

Don State Technical University

Email: bys_ka87@mail.ru
ORCID iD: 0000-0002-8283-7730
SPIN-code: 2294-6080
Scopus Author ID: 57219208062
ResearcherId: ABD-7087-2022

Senior Lecturer

Russian Federation, 1 Gagarin square, Rostov-on-Don, 344000, Russian Federation

Svetlana A. Debeeva

Don State Technical University

Email: sve_tchk@mail.ru
ORCID iD: 0000-0002-2796-2424
SPIN-code: 2050-1090

Ph.D. (Engineering), Associate Professor

Russian Federation, 1 Gagarin square, Rostov-on-Don, 344000, Russian Federation

References

  1. Komanduri R, Hou Z.B. A review of the experimental techniques for the measurement of heat and temperatures generated in some manufacturing processes and tribology // Tribology International. – 2001. – Vol. 34 (10). – P. 653–682. – doi: 10.1016/S0301-679X(01)00068-8.
  2. Grzesik W. Experimental investigation of the cutting temperature when turning with coated indexable inserts // International Journal of Machine Tools and Manufacture. – 1999. – Vol. 39 (3). – P. 355–369. – doi: 10.1016/S0890-6955(98)00044-3.
  3. An experimental technique for the measurement of temperature fields for the orthogonal cutting in high speed machining / G. Sutter, L. Faure, A. Molinari, N. Ranc, V. Pina // International Journal of Machine Tools and Manufacture. – 2003. – Vol. 43 (7). – P. 671–678. – doi: 10.1016/S0890-6955(03)00037-3.
  4. An improved analytical model of cutting temperature in orthogonal cutting of Ti6Al4V / C. Shan, X. Zhang, B. Shen, D. Zhang // Chinese Journal of Aeronautics. – 2019. – Vol. 32 (3). – P. 759–769. – doi: 10.1016/j.cja.2018.12.001.
  5. Barzegar Z., Ozlu E. Analytical prediction of cutting tool temperature distribution in orthogonal cutting including third deformation zone // Journal of Manufacturing Processes. – 2021. – Vol. 67. – P. 325–344. – doi: 10.1016/j.jmapro.2021.05.003.
  6. Analytical and experimental investigations of rake face temperature considering temperature-dependent thermal properties / J. Weng, J. Saelzer, S. Berger, K. Zhuang, A. Bagherzadeh, E. Budak, D. Biermann // Journal of Materials Processing Technology. – 2023. – Vol. 314. – P. 117905. – doi: 10.1016/j.jmatprotec.2023.117905.
  7. Кулкарни А.П., Чинчаникар С., Саргаде В.Г. Теория размерностей и моделирование температуры на границе раздела стружка–инструмент при точении SS304 на основе искусственных нейронных сетей // Обработка металлов (технология, оборудование, инструменты). – 2021. – Т. 23, № 4. – С. 47–64. – doi: 10.17212/1994-6309-2021-23.4-47-64.
  8. Cutting temperatures in hard turning chromium hardfacings with PCBN tooling / X.J. Ren, Q.X. Yang, R.D. James, L. Wang // Journal of Materials Processing Technology. – 2004. – Vol. 147 (1). – P. 38–44. – doi: 10.1016/j.jmatprotec.2003.10.013.
  9. Sulaiman S., Roshan A., Borazjani S. Effect of cutting parameters on tool-chip interface temperature in an orthogonal turning process // Advanced Materials Research. – 2014. – Vol. 903. – P. 21–26. – doi: 10.4028/ href='www.scientific.net/amr.903.21' target='_blank'>www.scientific.net/amr.903.21.
  10. Kikuchi M. The use of cutting temperature to evaluate the machinability of titanium alloys // Acta Biomaterialia. – 2009. – Vol. 5 (2). – P. 770–775. – doi: 10.1016/j.actbio.2008.08.016.
  11. Karaguzel U., Budak E. Investigating effects of milling conditions on cutting temperatures through analytical and experimental methods // Journal of Materials Processing Technology. – 2018. – Vol. 262. – P. 532–540. – doi: 10.1016/j.jmatprotec.2018.07.024.
  12. Cutting tool temperature prediction method using analytical model for end milling / Wu Baohai, C. Di, H. Xiaodong, Z. Dinghua, T. Kai // Chinese Journal of Aeronautics. – 2016. – Vol. 29 (6). – P. 1788–1794. – doi: 10.1016/j.cja.2016.03.011.
  13. Experimental study on coupling characteristics of cutting temperature rise and cutting vibration under different tool wear states / S. Li, Sh. Li, Y. Hu, E. Popov // International Journal of Advanced Manufacturing Technology. – 2022. – Vol. 118. – P. 907–919. – doi: 10.1007/s00170-021-07948-w.
  14. Experimental study on correlation between turning temperature rise and turning vibration in dry turning on aluminum alloy / Q. Yu, Sh. Li, X. Zhang, M. Shao // International Journal of Advanced Manufacturing Technology. – 2019. – Vol. 103. – P. 453–469. – doi: 10.1007/s00170-019-03506-7.
  15. Температурный режим при трении инструментальных материалов с учётом объемности источника тепловыделения / А.В. Чичинадзе, К.Г. Шучев, А.А. Рыжкин, А.И. Филипчук, М.М. Климов // Трение и износ. – 1986. – № 7. – С. 43–51.
  16. Термоэлектрические характеристики процесса точения стальных заготовок твердосплавными пластинами с комбинированными покрытиями / В.А. Лебедев, М.М. Алиев, Е.В. Фоминов, А.В. Фоменко, А.А. Марченко, А.Е. Мироненко // Трение и износ. – 2023. – Т. 44, № 2. – С. 114–121. – doi: 10.32864/0202-4977-2023-44-2-114-121.
  17. Рыжкин А.А. Синергетика изнашивания инструментальных материалов при лезвийной обработке. – Ростов н/Д.: ДГТУ, 2019. – 289 с.
  18. Мигранов М.Ш., Шустер Л.Ш. Износостойкость режущего инструмента с многослойными покрытиями // Трение и износ. – 2005. – Т. 26, № 3. – С. 304–307.
  19. Влияние периодических флуктуаций параметров режимов резания на температуру передней поверхности токарного резца / Е.В. Фоминов, В.Е. Гвинджилия, А.А. Марченко, К.Г. Шучев // Advanced Engineering Research (Rostov-on-Don). – 2025. – Т. 25, № 1. – С. 32–42. – doi: 10.23947/2687-1653-2025-25-1-32-42.
  20. Даниелян А.М., Бобрик П.И., Гуревич Я.Л. Обработка резанием жаропрочных сталей, сплавов и тугоплавких металлов. – М.: Машиностроение, 1965. – 308 с.
  21. Резников А.Н. Теплофизика резания. – М.: Машиностроение, 1969. – 288 с.
  22. Multi-objective optimization of performance indicators in turning of AISI 1045 under dry cutting conditions / A.T. Abbas, A.A. Al-Abduljabbar, M.M. El Rayes, F. Benyahia, I.H. Abdelgaliel, A. Elkaseer // Metals. – 2023. – Vol. 13 (1). – P. 96. – doi: 10.3390/met13010096.
  23. Özbek O. Evaluation of nano fluids with minimum quantity lubrication in turning of Ni-base superalloy UDIMET 720 // Lubricants. – 2023. – Vol. 11 (4). – P. 159. – doi: 10.3390/lubricants11040159.
  24. Experimental investigation of turning process parameter under several cutting conditions for duplex steels for minimization of cutting temperature / K.K. Arun, V.R. Navaneeth, S. Prabhu, M. Ramesh Kumar, M. Giriraj // Materials Today: Proceedings. – 2022. – Vol. 62 (4). – P. 1917–1920. – doi: 10.1016/j.matpr.2022.01.447.
  25. Заковоротный В.Л., Гвинджилия В.Е. Влияние вибраций на траектории формообразующих движений инструмента при точении // Обработка металлов (технология, оборудование, инструменты). – 2019. – Т. 21, № 3. – С. 42–58. – doi: 10.17212/1994- 6309-2019-21.3-42-58.
  26. Рыжкин А.А. Теплофизические процессы при изнашивании инструментальных режущих материалов. – Ростов н/Д.: Изд-во ДГТУ, 2005. – 311 с.
  27. Бобров В.Ф. Развитие науки о резании металлов. – М.: Машиностроение, 1967. – 416 с.
  28. Силин С.С. Методы подобия при резании материалов. – М.: Машиностроение, 1979. – 152 с.
  29. Влияние динамических характеристик процесса резания на шероховатость поверхности детали при токарной обработке / В.Е. Гвинджилия, Е.В. Фоминов, Д.В. Моисеев, Е.И. Гамалеева // Обработка металлов (технология, оборудование, инструменты). – 2024. – Т. 26, № 2. – С. 143–157. – doi: 10.17212/1994-6309-2024-26.2-143-157.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».