ВЫБОР КОНСТРУКТИВНЫХ ПАРАМЕТРОВ НЕСУЩИХ СИСТЕМ МАШИН С УЧЕТОМ ТЕХНОЛОГИЧЕСКОЙ НАГРУЗКИ

Обложка

Цитировать

Полный текст

Аннотация

Рассматриваются вопросы динамического поведения несущих систем технологических машин в условиях эксплуатации. Целью данной работы является выработка рекомендаций для выбора ассортимента тканей на технологическом оборудовании (на примере ткацкого станка СТБ). Актуальность исследования обусловлена отсутствием рекомендаций по выбору технологического оборудования и единой методики, позволяющей учитывать динамический характер приложения технологического усилия. В результате проведенной работы выполнено уточнение ранее предложенной авторами расчетной модели несущих систем путем введения в нее дополнительных элементов, необходимых для работы станков при выработке определенного ассортимента тканей. Средствами CAD системы SolidWorks и конечно-элементного CAE комплекса ANSYS проведено уточнение частотного спектра собственных колебаний несущих систем для гаммы ткацких машин СТБ с заправочными ширинами 180,190, 220, 250, 330 см. Диапазон изменения частот составляет: для первой частоты - от 24,9 Гц (СТБ-180) до 17,7 Гц (СТБ-330); для второй частоты - 26,7…20,8 Гц; для третьей частоты 54,8…25,2 Гц. Показано, что технологическая нагрузка от натяжения нитей основы может быть представлена как нагрузка от статического действия силы предварительного натяжения пружины подвижного скала и динамической составляющей, зависящей от работы механизмов машины. Также показано, что несущие системы ткацких машин при определенных режимах эксплуатации работают в условиях, близких к резонансу. Определены значения перемещений отдельных элементов несущих систем от технологической нагрузки, представленной рядом Фурье. Полученные результаты исследований позволяют выработать конкретные рекомендации в направлении разграничения ассортиментных возможностей ткацких машин типа СТБ в соответствии с установленными требованиями к санитарно-гигиеническим условиям при работе на оборудовании. На стадии проектирования технологического оборудования предлагается использовать форму и характер технологической нагрузки в виде синусоидального импульса с периодом действия, равным времени оборота главного вала станка, и амплитудой, равной статической составляющей действующей силы для определенного ассортимента тканей; проектировать конструкции несущих систем в соответствии с отношением частот вынужденных и свободных колебаний, равным трем и более, используя частотный спектр вынужденных колебаний, полученный в результате разложения технологической нагрузки в ряд Фурье.

Об авторах

Юрий Ильич Подгорный

Новосибирский государственный технический университет; Новосибирский технологический институт (филиал) Московского государственного университета дизайна и технологии

Email: pjui@mail.ru
пр. К. Маркса, 20, г. Новосибирск, 630073, Россия; Красный пр., 35 (ул. Потанинская, 5), г. Новосибирск, 630099, Россия

Вадим Юрьевич Скиба

Новосибирский государственный технический университет

Email: skeeba_vadim@mail.ru
пр. К. Маркса, 20, г. Новосибирск, 630073, Россия

Александр Всеволодович Кириллов

Новосибирский государственный технический университет; Новосибирский государственный педагогический университет

Email: kirillovalvs@mail.ru
пр. К. Маркса, 20, г. Новосибирск, 630073, Россия; ул. Вилюйская, 28, г. Новосибирск, 630126, Россия

Ольга Владимировна Максимчук

Новосибирский технологический институт (филиал) Московского государственного университета дизайна и технологии

Email: ovmak@ngs.ru
Красный пр., 35 (ул. Потанинская, 5), г. Новосибирск, 630099, Россия

Дмитрий Владимирович Лобанов

Братский государственный университет

Email: mf_nauka@brstu.ru
ул. Макаренко, 40, г. Братск, Иркутская область, 665709, Россия

Виктор Робертович Глейм

Новосибирский государственный технический университет

Email: v_gleim@mail.ru
пр. К. Маркса, 20, г. Новосибирск, 630073, Россия

Алексей Константинович Жигулев

Новосибирский государственный технический университет

Email: alexey-zhigulev@mail.ru
пр. К. Маркса, 20, г. Новосибирск, 630073, Россия

Ольга Владимировна Саха

Новосибирский государственный технический университет

Email: olga-v205@rambler.ru
пр. К. Маркса, 20, г. Новосибирск, 630073, Россия

Список литературы

  1. Подгорный Ю.И. Методы исследования заправок, их синтез и разработка критериев оптимальности условий эксплуатации ткацких станков при формировании плотных тканей: дис. … д-ра техн. наук: 05.19.03; 05.02.13: защищена 20.05.1990: утв. 07.12.1990. - Кострома, 1990. - 541 с.
  2. Подгорный Ю.И., Афанасьев Ю.А., Кириллов А.В. Исследование и выбор параметров при синтезе и эксплуатации механизмов технологических машин: монография. - Новосибирск: Изд-во НГТУ, 2002. - 196 с.
  3. Атапин В.Г. Многоуровневое проектирование корпусных конструкций многоцелевых станков // Вестник машиностроения. - 1999. - № 1. - С. 9-12.
  4. Атапин В.Г. Проектирование несущих конструкций тяжелых многоцелевых станков с учетом точности, производительности, массы // Вестник машиностроения. - 2001. - № 2. - С. 3-6.
  5. Атапин В.Г. Оптимизация несущей системы стола тяжелого многоцелевого станка // Обработка металлов (технология, оборудование, инструменты). - 2006. - № 4 (33). - С. 30-32.
  6. Атапин В.Г. Метод декомпозиции в проектировании многоцелевых станков // Обработка металлов (технология, оборудование, инструменты). - 2014. - № 1 (62). - С. 61-68.
  7. Кирилин Ю.В., Еремин Н.В. Исследование несущей системы станка методом конечных элементов // СТИН. - 2002. - № 8. - С. 19-21.
  8. Кирилин Ю.В., Дышловенко П.Е., Еремин Н.В. Моделирование подвижного и неподвижного стыка металлорежущего станка // СТИН. - 2003. - № 9. - С. 22-28.
  9. Кирилин, Ю.В. Совершенствование несущих систем фрезерных станков на основе их моделирования и расчета динамических характеристик: дис. … д-ра техн. наук: 05.03.01. - Ульяновск, 2006. - 345 с.
  10. Проектирование автоматизированных станков и комплексов. В 2 т. Т. 1 / под ред. П.М. Чернянского. - 2-е изд. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2014. - 336 с. - ISBN 978-5-7038-3810-5.
  11. Чернянский П.М. Основы проектирования точных станков. Теория и расчет: учебное пособие. - М.: КноРус, 2010. - 239 с. - ISBN 978-5-406-00381-7.
  12. Моделирование несущих систем технологических машин / Ю.И. Подгорный, В.Ю. Скиба, А.В. Кириллов, В.Н. Пушнин, И.А. Ерохин, Д.Ю. Корнев // Обработка металлов (технология, оборудование, инструменты). - 2014. - № 2 (63). - С. 91-99.
  13. Wang X.R., Jin J.Q., Li Y.Z. The harmonic response analysis of workover rig platorm base on ANSYS Workbench // Advanced Materials Research. - 2014. - Vol. 945-949. - P. 766-769. - doi: 10.4028/ href='www.scientific.net/AMR.945-949.766' target='_blank'>www.scientific.net/AMR.945-949.766.
  14. Lee H.H. Finite element simulations with ANSYS Workbench 15. - [S. l.]: SDC Publ., 2014. - 600 p. - ISBN-10 1585039071. - ISBN-13 978-1585039074.
  15. Chen X., Liu Y. Finite element modeling and simulation with ANSYS Workbench. - 1st ed. - Boca Raton: CRC Press, 2014. - 411 p. - ISBN-10 1439873844. - ISBN-13 978-1439873847.
  16. Integration of production steps on a single equipment / V. Skeeba, V. Pushnin, I. Erohin, D. Kornev // Materials and Manufacturing Processes. - 2015. - Vol. 30, iss. 12. - P. 1408-1411. - doi: 10.1080/10426914.2014.973595.
  17. Skeeba V., Ivancivsky V., Pushnin V. Numerical modeling of steel surface hardening in the process of high energy heating by high frequency currents // Applied Mechanics and Materials. - 2015. - Vol. 698. - P. 288-293. - doi: 10.4028/ href='www.scientific.net/AMM.698.288' target='_blank'>www.scientific.net/AMM.698.288.
  18. Zhang X., Chen Y., Yao W. Relationship between bridge natural frequencies and foundation scour depth based on IITD method // Research Journal of Applied Sciences, Engineering and Technology. - 2013. - Vol. 6, iss. 1. - P. 102-106.
  19. Actual problems and decisions in machine building / ed. by V.Yu. Skeeba. - Pfaffikon: Trans Tech Publ., 2015. - 344 p. - (Applied Mechanics and Materials; vol. 788). - ISBN 978-3-03835-551-9.
  20. Cheng L.L. The finite element and experimental analysis of the natural frequency of the cantilever sheet and model verification based on levy method // Applied Mechanics and Materials. - 2013. - Vol. 344. - P. 132-135. - doi: 10.4028/ href='www.scientific.net/AMM.344.132' target='_blank'>www.scientific.net/AMM.344.132.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».