ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ ПРОЦЕССА ПОДГОТОВКИ ПРОИЗВОДСТВА ИЗДЕЛИЙ ИЗ КОМПОЗИТОВ

Обложка

Цитировать

Полный текст

Аннотация

Представлены пути повышения эффективности применения композитов, которыми предлагается заменить общепринятые конструкционные материалы в области машиностроения там, где это возможно; раскрыты этапы разработки программного продукта для подготовки производства изделий из композитов; представлен программный модуль для создания базы данных композитов, описан принцип работы программного продукта; отмечена необходимость в структурировании, систематизации данных о композитах и автоматизации операций поиска, анализа и принятия синтезированного решения по выбору рационального композиционного материала; изображен алгоритм, в основе которого лежит методика многокритериального анализа и выбора рационального объекта; представлен программный продукт для выбора рациональных композиционных материалов по их параметрам (плотность, предел прочности: при растяжении, сжатии, изгибе, модуль упругости, стоимость, теплопроводность и т.д.) в условиях реального производства; отражены перспективы дальнейшей реализации результатов исследований.

Об авторах

Дмитрий Владимирович Лобанов

Братский государственный университет

Email: mf_nauka@brstu.ru
ул. Макаренко, 40, г. Братск, 665709, Россия

Даниил Александрович Рычков

Братский государственный университет

Email: dielektrik84@mail.ru
ул. Макаренко, 40, г. Братск, 665709, Россия

Сергей Александрович Сидоренко

Братский государственный университет

Email: serzh_sidorenko_1993@mail.ru
ул. Макаренко, 40, г. Братск, 665709, Россия

Список литературы

  1. Полимерные композиционные материалы: структура, свойства, технология: учебное пособие / М.Л. Кербер, В.М. Виноградов, Г.С. Головкин, Ю.А. Горбаткина, В.К. Крыжановский, А.М. Куперман, И.Д. Симонов-Емельянов, В.И. Халнулин, В.А. Бунаков; под ред. А.А. Берлина. - CПб.: Профессия, 2008. - 560 с. - ISBN 978-5-93913-130-8.
  2. Composite materials based on wastes of flat glass processing / A.V. Gorokhovsky, J.I. Escalante-Garcia, G.Yu. Gashnikova, L.P. Nikulina, S.E. Artemenko // Waste Management. - 2005. - Vol. 25, iss. 7. - P. 733-736. - doi: 10.1016/j.wasman.2004.11.007.
  3. Chung D.D.L. Composite materials: functional materials for modern technologies. - 2nd ed. - London: Springer-Verlag, 2004. - 293 p. - ISBN 978-1-4471-3734-0. - doi: 10.1007/978-1-4471-3732-0.
  4. Марков А.М. Технологические особенности механической обработки деталей из композиционных материалов // Наукоемкие технологии в машиностроении. - 2014. - № 7 (37). - С. 3-8.
  5. Мордвин М.А., Якимов С.В., Баклушин С.М. Рекомендации по механической обработке композиционных материалов // Вестник ИжГТУ им. М.Т. Калашникова. - 2010. - № 2. - С. 26-29.
  6. Pascual M.J., Duran A., Pascual L. Sintering behaviour of composite materials borosilicate glass-zro2 fibre composite materials // Journal of the European Ceramic Society. - 2002. - Vol. 22, iss. 9-10. - P. 1513-1524. - doi: 10.1016/S0955-2219(01)00479-4.
  7. Nano-ag: polymeric composite material for ultrafast photonic crystal all-optical switching / X. Hu, P. Jiang, Ch. Xin, H. Yang, Q. Gong // Applied Physics Letters. - 2009. - Vol. 94, iss. 3. - P. 031103. - doi: 10.1063/1.3073712.
  8. Доц М.В., Марков А.М. Автоматизация проектирования токарной обработки композиционных материалов // Инновации в машиностроении: сборник трудов 2-ой Международной научно-практической конференции / под ред. В.Ю. Блюменштейна. - Кемерово, 2011. - С. 112-115.
  9. Иванцивский В.В., Скиба В.Ю. Повышение поверхностной микротвердости стали при интеграции поверхностно-термической и финишной механической обработок // Научный вестник НГТУ. - 2006. - № 3 (24). - С. 187-192.
  10. Скиба В.Ю. Повышение эффективности технологического процесса обработки деталей машин, при интеграции абразивного шлифования и поверхностной закалки ТВЧ: дис. … канд. техн. наук: 05.03.01 / Новосибирский государственный технический университет. - Новосибирск, 2008. - 257 с.
  11. Иванцивский В.В., Скиба В.Ю., Пушнин В.Н. Методика назначения режимов обработки при совмещении операций абразивного шлифования и поверхностной закалки ТВЧ // Обработка металлов (технология, оборудование, инструменты). - 2011. - № 4. - С. 19-25.
  12. Perspective of high energy heating implementation for steel surface saturation with carbon / N. Plotnikova, A. Losinskaya, V. Skeeba, E. Nikitenko // Applied Mechanics and Materials. - 2015. - Vol. 698. - P. 351-354. - doi: 10.4028/ href='www.scientific.net/AMM.698.351' target='_blank'>www.scientific.net/AMM.698.351.
  13. Skeeba V., Pushnin V., Kornev D. Quality improvement of wear-resistant coatings in plasma spraying integrated with high-energy heating by high frequency currents // Applied Mechanics and Materials. - 2015. - Vol. 788. - P. 88-94. - doi: 10.4028/ href='www.scientific.net/AMM.788.88' target='_blank'>www.scientific.net/AMM.788.88.
  14. Структура износостойких плазменных покрытий после высокоэнергетического воздействия ТВЧ / Ю.С. Чёсов, Е.А. Зверев, В.В. Иванцивский, В.Ю. Скиба, Н.В. Плотникова, Д.В. Лобанов // Обработка металлов (технология, оборудование, инструменты). - 2014. - № 4 (65). - С. 11-18.
  15. Integrated processing: quality assurance procedure of the surface layer of machine parts during the manufacturing step "Diamond Smoothing" / V.Yu. Skeeba, V.V. Ivancivsky, D.V. Lobanov, A.K. Zhigulev, P.Yu. Skeeba // IOP Conference Series: Materials Science and Engineering. - 2015. - Vol. 125. - P. 012031. - doi: 10.1088/1757-899X/125/1/012031.
  16. The features of steel surface hardening with high energy heating by high frequency currents and shower cooling / V.V. Ivancivsky, V.Y. Skeeba, I.A. Bataev, D.V. Lobanov, N.V. Martyushev, O.V. Sakha, I.V. Khlebova // IOP Conference Series: Materials Science and Engineering. - 2016. - Vol. 156. - P. 012025. - doi: 10.1088/1757-899X/156/1/012025.
  17. Hybrid processing: the impact of mechanical and surface thermal treatment integration onto the machine parts quality / V.Yu. Skeeba, V.V. Ivancivsky, A.V. Kutyshkin, K.A. Parts // IOP Conference Series: Materials Science and Engineering. - 2016. - Vol. 126. - P. 012016. - doi: 10.1088/1757-899X/126/1/012016.
  18. Acoustic analysis of composite soft materials, II characterization of composite materials containing glass beads / M. Maebayashi, S. Otsuka, T. Matsuoka, S. Koda // Japanese Journal of Applied Physics. - 2003. - Vol. 42, N 5B. - P. 2939-2943.
  19. Evaluation of influence of interphase material parameters on effective material properties of three phase composites / S. Kari, H. Berger, U. Gabbert, R. Guinovart-Diaz, J. Bravo-Castillero, R. Rodriguez-Ramos // Composites Science and Technology. - 2008. - Vol. 68, N 3-4. - P. 684-691. - doi: 10.1016/j.compscitech.2007.09.009.
  20. Ярославцев В.М. Технологические решения проблем обработки ракетных и аэрокосмических конструкций из композиционных материалов // Вестник МГТУ. Серия «Машиностроение». - 2005. - № S2. - С. 41-62.
  21. Рудых О.Л., Меламед Э.Ш. Основы систем автоматизированного проектирования строительных конструкций. Ч. 2. Виды обеспечений САПР (программно-аппаратные средства): учебное пособие. - Хабаровск: ДВГУПС, 1998. - 157 с.
  22. Steady-state and transient-state optical properties of a charge-transfer composite material MO-PPV/SWNTs / S. Chu, W. Yi, S. Wang, F. Li, W. Feng, Q. Gong // Chemical Physics Letters. - 2008. - Vol. 451, iss. 1-3. - P. 116-120. - doi: 10.1016/j.cplett.2007.11.087.
  23. Nano-porous SI/C composites for anode material of lithium-ion batteries / Y. Zheng, J. Yang, J. Wang, Y. NuLi // Electrochimica Acta. - 2007. - Vol. 52, iss. 19. - P. 5863-5867. - doi: 10.1016/j.electacta.2007.03.013.
  24. Sliding wear behavior of copper-graphite composite material for use in maglev transportation system / X.C. Ma, G.Q. He, D.H. He, C.S. Chen, Z.F. Hu // Wear. - 2008. - Vol. 265, iss. 7-8. - P. 1087-1092. - doi: 10.1016/j.wear.2008.02.015.
  25. Li J.L., Xiong D.S. Tribological properties of nickel-based self-lubricating composite at elevated temperature and counterface material selection // Wear. - 2008. - Vol. 265, iss. 3-4. - P. 533-539. - doi: 10.1016/j.wear.2007.09.005.
  26. Synthesis and electronic behaviors of Ce0.5Hf0.5O2/Carbon clusters composite material / H. Miyazaki, H. Matsui, H. Kitakaze, S. Karuppuchamy, S. Ito, M. Yoshihara // Materials Chemistry and Physics. - 2009. - Vol. 113, iss. 1. - P. 21-25. - doi: 10.1016/j.matchemphys.2008.08.087.
  27. Методика выбора композиционных материалов взамен общепринятых конструкционных / Д.В. Лобанов, С.А. Сидоренко, Д.А. Ющенко, А.В. Большешапова // Современные материалы, техника и технология: материалы 4-й Международной научно-практической конференции (25-26 декабря 2014 года). - Курск, 2014. - С. 255-261.
  28. Анализ и рациональный выбор полимерных композиционных материалов для изделий по их физико-механическим свойствам / Д.В. Лобанов, С.А. Сидоренко, Д.А. Ющенко, А.В. Большешапова // Актуальные проблемы в машиностроении. - 2015. - № 2. - С. 206-213.
  29. Сидоренко С.А., Лобанов Д.В., Рычков Д.А. Программный продукт для автоматизации выбора рационального композиционного материала // Актуальные проблемы в машиностроении. - 2016. - № 3. - С. 30-36.
  30. Формирование базы данных композиционных материалов (DBCM v. 1.0): свидетельство о гос. регистрации программы для ЭВМ № 2016611925 / А.С. Янюшкин, Д.В. Лобанов, С.А. Сидоренко, Д.А. Рычков. - Заявка № 2015662595; заявл. 18.12.2015; зарег. 15.02.2016.
  31. Выбор композиционного материала (SCM v. 1.0): свидетельство о государственной регистрации программы для ЭВМ № 2016616679 / А.С. Янюшкин, Д.В. Лобанов, С.А. Сидоренко, Д.А. Рычков. - Заявка № 2016611730; заявл. 03.03.2016; зарег. 16.06.2016.
  32. Yanyushkin A.S., Rychkov D.A., Lobanov D.V. Rationalization of polymer composite materials processing by improving production efficiency // Procedia Engineering. - 2016. - Vol. 150. - P. 942-947. - doi: 10.1016/j.proeng.2016.07.067.
  33. Stability and process of destruction of compressed plate of layered composite materials with defects / L.A. Bokhoeva, V.E. Rogov, A.S. Chermoshentseva, D.V. Lobanov // IOP Conference Series: Materials Science and Engineering. - 2016. - Vol. 142. - P. 012077. - doi: 10.1088/1757-899X/142/1/012077.
  34. Лобанов Д.В., Янюшкин А.С. Повышение эффективности применения лезвийного инструмента при обработке композиционных неметаллических материалов // Проблемы механики современных машин: материалы VI Международной конференции / отв. ред. В.С. Балбаров. - М., 2015. - С. 183-189.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».