Оптимизация режимов размола порошка молибдена

Обложка

Цитировать

Полный текст

Аннотация

Введение. Тугоплавкие материалы являются привлекательными для высокотемпературных применений в аэрокосмической, ядерной и военной промышленности, поскольку они обладают высокой температурой плавления (> 2000 °C). Молибден (Мо) относится к числу таких материалов, представляющих большой интерес для эксплуатации при высоких температурах благодаря своим уникальным свойствам, таким как хорошая теплопроводность, высокая жесткость и ударная вязкость. Производство молибдена затруднено ввиду его высокой температуры плавления и температуры вязкохрупкого перехода, поэтому при производстве этого металла в основном применяются методы порошковой металлургии. Для этой технологии, необходимо иметь порошки молибдена высокого качества, особенно высокую степень чистоты и гомогенность распределения частиц по размеру. Одним из способов обработки, позволяющим получить частицы нано- и микроразмеров, является высококинетическое энергетическое измельчение порошков. Данная экономически эффективная технология основана на трении и высокоэнергетическом столкновении частиц и измельчительных шаров. Поэтому целью текущей работы является оптимизация параметров высокоэнергетического кинетического размола порошка молибдена. Оптимизация параметров обработки имеет значительное влияние на ускорение процесса формирования продукта, на последующее спекание и достижение наилучших механических свойств конечного продукта. Оптимизация режимов размола порошка молибдена была достигнута путем изменения параметров обработки: скорости вращения шпинделя, соотношения массы шаров к массе порошка (BPR) и времени измельчения. В первую очередь была определена скорость вращения шпинделя. Эта величина варьировалась в диапазоне от 600 до 1200 об/мин. После этого была произведена оценка влияния времени измельчения и отношения массы шаров к массе порошка. В ходе проведения исследований время измельчения составляло от 2 до 60 мин, соотношение массы шаров к массе порошка 100:3 и 200:3. После этого было проведено исследование влияния измененных параметров обработки на морфологию частиц порошка и их распределение по размеру. В работе был использован порошок молибдена с фракцией ~100 мкм. Методы исследования: для оценки распределения частиц по размеру были использованы методы растровой электронной микроскопии и лазерной дифракции. Результаты и обсуждение. В результате было выявлено, что размер частиц понизился со 100 до 4 мкм с увеличением времени измельчения с двух до 60 мин. Однако в каждой партии было обнаружено некоторое количество холодносваренных частиц размером 200…400 мкм. Как результат, оптимальными режимами размола были: скорость вращения шпинделя 900 об/мин, BPR (200:3) и время размола 60 мин.

Об авторах

Л. Дичкова

Email: lucie.palenikova@ceitec.vutbr.cz
Технологический университет Брно, Центрально-европейский технологический институт, ул. Пуркинёва, 123, г. Брно, 61200, Чешская Республика; lucie.palenikova@ceitec.vutbr.cz

П. Комаров

Email: pasha-molotov@mail.ru
1.Технологический университет Брно, Центрально-европейский технологический институт, ул. Пуркинёва, 123, г. Брно, 61200, Чешская Республика; 3.Новосибирский государственный технический университет, пр. К. Маркса, 20, г. Новосибирск, 630073, Российская Федерация; pasha-molotov@mail.ru

М. Ремешова

Email: michaela.remesova@ceitec.vutbr.cz
Технологический университет Брно, Центрально-европейский технологический институт, ул. Пуркинёва, 123, г. Брно, 61200, Чешская Республика; michaela.remesova@ceitec.vutbr.cz

М. Дичка

Email: Martin.Dycka@ceitec.vutbr.cz
Технологический университет Брно, Центрально-европейский технологический институт, ул. Пуркинёва, 123, г. Брно, 61200, Чешская Республика; Martin.Dycka@ceitec.vutbr.cz

К. Дворжак

Email: dvorak.k@fce.vutbr.cz
кандидат технических наук, доцент; Технологический университет Брно, Строительный факультет, ул. Вевержи, 512/90, г. Брно, 60200, Чешская Республика; dvorak.k@fce.vutbr.cz

М. Менелаоу

Email: melita.menelaou@ceitec.vutbr.cz
кандидат технических наук; Технологический университет Брно, Центрально-европейский технологический институт, ул. Пуркинёва, 123, г. Брно, 61200, Чешская Республика; melita.menelaou@ceitec.vutbr.cz

Л. Челко

Email: ladislav.celko@ceitec.vutbr.cz
кандидат технических наук, доцент; Технологический университет Брно, Центрально-европейский технологический институт, ул. Пуркинёва, 123, г. Брно, 61200, Чешская Республика; ladislav.celko@ceitec.vutbr.cz

Список литературы

  1. Handbook of non-ferrous metal powders: technologies and applications / O. Neikov, S. Naboychenko, I.B. Murashov, A. Yefimov, G. Dowson. – Amsterdam: Elsevier Science, 2009. – P. 464–470.
  2. Dean J.A. Lange’;s handbook of chemistry. – New York: McGraw-Hill Professional, 1998.
  3. Heat resistant materials / ed. by J.R. Davis. – Materials Park, Ohio: ASM International, 1997. – P. 361–364. – (ASM Speciality handbook).
  4. Densification behavior of pure molybdenum powder by spark plasma sintering / R. Ohser-Wiedemann, U. Martin, H.J. Seifert, A. Müller // International Journal of Refractory Metals and Hard Materials. – 2010. – Vol. 28, iss. 4. – P. 550–557. – doi: 10.1016/j.ijrmhm.2010.03.003.
  5. Rheological and sintering behaviors of nanostructured molybdenum powder / Y. Kim, S. Lee, J.-W. Noh, S.H. Lee, I.-D. Jeong, S.-J. Park // International Journal of Refractory Metals and Hard Materials. – 2013. – Vol. 41. – P. 442–448. – doi: 10.1016/j.ijrmhm.2013.06.001.
  6. Sheng Y., Guo Z., Hao J. Characterization of spherical molybdenum powders prepared by RF plasma processing // Advanced Materials Research. – 2012. – Vol. 482–484. – P. 2563–2567. – doi: 10.4028/ href='www.scientific.net/AMR.482-484.2563' target='_blank'>www.scientific.net/AMR.482-484.2563.
  7. Spheroidization of molybdenum powder by radio frequency thermal plasma / X.-P. Liu, K.-S. Wang, P. Hu, Q. Chen, A. Volinsky // International Journal of Minerals, Metallurgy and Materials. – 2015. – Vol. 22, iss. 11. – P. 1212–1218. – doi: 10.1007/s12613-015-1187-7.
  8. Garg P., Park S.-J., German R.M. Effect of die compaction pressure on densification behavior of molybdenum powders // International Journal of Refractory Metals and Hard Materials. – 2007. – Vol. 25, iss. 1. – P. 16–24. – doi: 10.1016/j.jrmhm.2005.10.014.
  9. On grain boundary segregation in molybdenum materials / K. Leitner, P.J. Felfer, D. Holec, J. Cairney, W. Knabl, A. Lorich, H. Clemens, S. Primig // Materials & Design. – 2017. – Vol. 135. – P. 204–212. – doi: 10.1016/j.matdes.2017.09.019.
  10. Mechanical properties of molybdenum products prepared by using molybdenum powders with different micro-morphologies / G. An, J. Sun, R.-Z. Liu, J. Li, Y.-J. Sun // Rare Metals. – 2015. – Vol. 34, iss. 4. – P. 276–281. – doi: 10.1007/s12598-013-0194-y.
  11. Preparation of molybdenum powder from molybdenite concentrate through vacuum decomposition-acid leaching combination process / Ch. Yang, Y. Zhou, D. Liu, W. Jiang, F. Liu, Z. Liu // Rare Metal Technology. – Cham: Springer, 2017. – P. 235–246.
  12. Bolitschek J., Luidold S., O’;Sullivan M. A study of the impact of reduction conditions on molybdenum morphology // International Journal of Refractory Metals and Hard Materials. – 2018. – Vol. 71. – P. 325–329. – doi: 10.1016/j.ijrmhm.2017.11.037.
  13. Rheological and sintering behaviors of nanostructured molybdenum powder / Y. Kim, S. Lee, J.-W. Noh, S.H. Lee, I.-D. Jeong, S.-J. Park // International Journal of Refractory Metals and Hard Materials. – 2013. – Vol. 41. – P. 442–448. – doi: 10.1016/j.ijrmhm.2013.06.001.
  14. Densification and crack suppression in selective laser melting of pure molybdenum / D. Wang, Ch. Yu, J. Ma, W. Liu, Z. Shen // Materials and Design. – 2017. – Vol. 129. – P. 44–52. – doi: 10.1016/j.matdes.2017.04.094.
  15. Ghayour H., Abdellhi M., Bahmanpour M. Optimization of the high energy ball-milling: modeling and parametric study // Powder Technology. – 2016. – Vol. 291. – P. 7–13. – doi: 10.1016/j.powtec.2015.12.004.
  16. Microstructure and thermal stability of MoSi2-CoNiCrAlY nanocomposite feedstock prepared by high energy ball milling / M. Liu, X. Zhong, J. Wang, Z. Liu, W. Qui, D. Zeng // Surface and Coatings Technology. – 2014. – Vol. 239. – P. 78–83. – doi: 10.1016/j.surfcoat.2013.11.022.
  17. Harris J.R., Wattis J.A.D., Wood J.V. A comparison of different models for mechanical alloying // Acta Materialia. – 2001. – Vol. 49, iss. 19. – P. 3991–4003. – doi: 10.1016/S1359-6454(01)00302-0.
  18. Analysis of mechanical milling in simoloyer: an energy modeling approach / B. Karthik, G.S. Gautam, N.R. Karthikeyan, B.S. Murty // Metallurgical and Materials Transactions A. – 2012. – Vol. 43, iss. 4. – P. 1323–1327. – doi: 10.1007/s11661-011-0946-y.
  19. Effect of high energy ball milling on structure and properties of 95W-3.5Ni-1.5Fe heavy alloys / M. Debata, T.S. Acharya, P. Sengupta, P.P. Acharya, S. Bajpai, K. Jayasankar // International Journal of Refractory Metals and Hard Materials. – 2017. – Vol. 69. – P. 170–179. – doi: 10.1016/j.ijrmhm.2017.08.007.
  20. Suryaanarayana C. Mechanical alloying and milling // Progress in Materials Science. – 2001. – Vol. 46, iss. 1–2. – P. 1–184. – doi: 10.1016/S0079-6425(99)00010-9.
  21. Ebrahimi-Kahrizsangi R., Abdellahi M., Bahmanpour M. Ignition time of nanopowders during milling: a novel simulation // Powder Technology. – 2015. – Vol. 272. – P. 224–234. – doi: 10.1016/j.powtec.2014.12.009.
  22. High energy milling on tungsten powders / U.R. Kiran, M.P. Kumar, M. Sankaranarayana, A.K. Singh, T.K.  Nandy // International Journal of Refractory Metals and Hard Materials. – 2015 – Vol. 48. – P. 74–81. – doi: 10.1016/j.ijrmhm.2014.06.025.
  23. Abdellahi M., Bhmanpour M., Bahmanpour M. Optimization of process parameters to maximize hardness of metal/ceramic nanocomposites produced by high energy ball milling // Ceramics International. – 2014. – Vol. 40, iss. 10. – P. 16259–16272. – doi: 10.1016/j.ceramint.2014.07.063.
  24. Biyik S., Aydin M. The effect of milling speed on particle size and morphology of Cu25W composite powder // Acta Physica Polonica A. – 2014. – Vol. 127. – P. 1255–1260.
  25. Rzavi-Tousi S.S., Szpunar J.A. Effect of ball size on steady state of aluminum powder and efficiency of impacts during milling // Powder Technology. – 2015. – Vol. 284. – P. 149–158. – doi: 10.1016/j.powtec.2015.06.035.
  26. Investigation of milling characteristics of alumina powders milled with a newly designed vibratory horizontal attritor / Y. Kilinc, S. Öztürk, B. Öztürk, I. Uslan // Powder Technology. – 2004. – Vol. 146. – P. 200–205. – doi: 10.1016/j.powtec.2004.09.031.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».