Исследование влияния энергетических параметров режимов дуговой сварки покрытыми электродами и управляющих алгоритмов их изменения на характеристики ударной вязкости и трещиностойкости получаемых сварных соединений

Обложка

Цитировать

Полный текст

Аннотация

Обоснование: Повышение требований к эксплуатационным характеристикам сварных конструкций в машиностроении, строительной промышленности, судостроении, трубопроводном транспорте обуславливает использование высокопрочных низколегированных сталей. Основным способом, применяемым при монтаже металлоконструкций, является дуговая сварка, оказывающая существенное влияние на свойства зоны сварного соединения, её структуру и механические характеристики. При этом всегда существует риск возникновения в зоне сварного соединения различных дефектов, природа появления которых разнообразна и труднопредсказуема. Цель исследований: изыскание путей повышения эксплуатационных характеристик в конструкциях ответственного назначения за счет установления взаимосвязи влияния энергетических параметров режимов дуговой сварки покрытыми электродами и управляющих алгоритмов их изменения, со структурой металла шва и зоны термического влияния, а также характеристиками ударной вязкости и трещиностойкости получаемых сварных соединений. Методика экспериментального исследования: для проведения испытаний были изготовлены образцы из стали 09Г2С, полученных ручной дуговой сваркой на режимах постоянного тока (СПТ) и низкочастотной модуляции тока (СМТ). Для изучения структуры сварных швов (СШ), зоны термического влияния (ЗТВ) и основного металла (ОМ) стали 09Г2С использовали оптическую микроскопию, совмещенную с анализатором изображений. В ходе исследований определяли средний размер зерна. Фрактографический анализ изломов различных участков проводили с применением растровой электронной микроскопии. Результаты работы: Произведена оценка влияния энергетических параметров режимов дуговой сварки покрытыми электродами на характеристики ударной вязкости и трещиностойкости сварных соединений, как основных показателей эксплуатационных характеристик конструкций ответственного назначения. Установлена взаимосвязь энергетических параметров режимов дуговой сварки покрытыми электродами и управляющих алгоритмов их изменения, со структурой металла шва и зоны термического влияния. Показано, что импульсный характер изменения энергетических параметров режима сварки оказывает благоприятное воздействие на теплосодержание расплава сварочной ванны и условия её кристаллизации. Испытания металла ЗТВ сварных соединений стали 09Г2С на статическую трещиностойкость показали, что все исследуемые соединения имеют высокие показатели во всем диапазоне температур: начиная от +20?, и заканчивая -60?, даже при наличии дефектов в виде усталостных трещин. Установлено эффективное влияние сварки, выполняемой в режиме низкочастотной модуляции тока, по сравнению со сваркой на постоянном токе, на сопротивление хрупкому разрушению сварных соединений из низкоуглеродистых сталей при пониженных климатических температурах.

Об авторах

Ю. Н. Сараев

Email: litsin@ispms.tsc.ru
доктор технических наук, профессор, главный научный сотрудник, Институт физики прочности и материаловедения СО РАН, litsin@ispms.tsc.ru

С. В. Гладковский

Email: gsv@imach.uran.ru
доктор технических наук, доцент, Институт машиноведения УрО РАН, gsv@imach.uran.ru

С. В. Лепихин

Email: lsv@imach.uran.ru
кандидат технических наук, Институт машиноведения УрО РАН, lsv@imach.uran.ru

И. С. Каманцев

Email: ks@imach.uran.ru
Институт машиноведения УрО РАН, ks@imach.uran.ru

А. Г. Лунёв

Email: agl@ispms.ru
кандидат технических наук, Институт физики прочности и материаловедения СО РАН, agl@ispms.ru

М. В. Перовская

Email: mv_perovskaya@inbox.ru
кандидат технических наук, Институт физики прочности и материаловедения СО РАН, mv_perovskaya@inbox.ru

Список литературы

  1. Физико-технические проблемы современного материаловедения. В 2 т. Т. 1 / редкол.: И.К. Походня и др.; НАН Украины. – Киев: Академпериодика, 2013. – 583 с. – ISBN 978-966-360-236-3.
  2. Liu C., Bhole S.D. Challenges and developments in pipeline weldability and mechanical properties // Science and Technology of Welding and Joining. – 2013. – Vol. 18, iss. 2. – P. 169–181. – doi: 10.1179/1362171812Y.0000000090.
  3. Shiga C. Problems in welded joints and systematic approach to their s solution in STX21 project // Science and Technology of Welding and Joining. – 2000. – Vol. 5, iss. 6. – P. 356–364.
  4. Development of new Low Transformation-Temperature welding consumable to prevent cold cracking in high strength steel welds / S. Zenitani, N. Hayakawa, J. Yamamoto, K. Hiraoka, Y. Morikage, T. Kubo, K. Yasuda, T. Amano // Proceedings of 2002 Symposium for Welded Structures of the Japan Welding Society. – Osaka, 2002. – P. 346–353.
  5. Ogino Y., Hirata Y. Numerical simulation of metal transfer in argon gas-shielded GMAW // Welding in the World. – 2015. – Vol. 59, iss. 4. – P. 465–473. – doi: 10.1007/s40194-015-0221-8.
  6. Kannengiesser Th., Lausch Th., Kromm A. Effects of heat control on the stress build-up during high-strength steel welding under defined restraint conditions // Welding in the World. – 2011. – Vol. 55, iss. 7. – P. 58–65.
  7. Поисковые исследования повышения надежности металлоконструкций ответственного назначения, работающих в условиях экстремальных нагрузок и низких климатических температур / Ю.Н. Сараев, С.В. Гладковский, Н.И. Голиков и др. // Наукоемкие технологии в проектах РНФ. Сибирь / под ред. С.Г. Псахье и Ю.П. Шаркеева. – Томск: Издательство НТЛ, 2017. – Гл. 5. – С. 134–202. – ISBN 978-5-89503-607-5.
  8. Лоос А.В., Лукутин А.В., Сараев Ю.Н. Источники питания для импульсных электротехнологических процессов. – Томск: Изд-во ТПУ, 1998. – 159 с.
  9. Saraev Yu.N., Bezborodov V.P., Selivanov Yu.V. Special features of the formation of protective corrosion-resisting coatings in pulsed electric arc surfacing of austenitic steels // Welding International. – 2010. – Vol. 24, iss. 11. – P. 884–888. – doi: 10.1080/09507116.2010.486199.
  10. Исследование влияния энергетических параметров режима дуговой сварки покрытыми электродами на стабильность тепломассопереноса / Ю.Н. Сараев, А.Г. Лунев, А.С. Киселев, А.С. Гордынец, Д.А. Нестерук, А.А. Хайдарова, Д.А. Чинахов, В.М. Семенчук // Сварочное производство. – 2018. – № 2. – С. 3–13.
  11. Investigation of stability of melting and electrode metal transfer in consumable electrode arc welding using power sources with different dynamic characteristics / Y.N. Saraev, D.A. Chinakhov, D.I. Ilyshenko, A.S. Kiselev, A.S. Gordynets // Welding International. – 2017. – Vol. 31, iss. 10. – P. 784–790. – doi: 10.1080/09507116.2017.1343977.
  12. Hibrid 2D–3D modelling of GTA welding with filler wire addition / A. Traidia, F. Roger, E. Guyot, J. Schroeder, G. Lubineau // International Journal of Heat and Mass Transfer. – 2012. – Vol. 55. – P. 3946–3963. – doi: 10.1016/j.ijheatmasstransfer.2012.03.025.
  13. Wang H., Colegrove P.A., Mehnen J. Hybrid modelling of the contact gap conductance heat transfer in welding process // Advances in Engineering Software. – 2014. – Vol. 68. – P. 19–24. – doi: 10.1016/j.advengsoft.2013.11.000.
  14. Impacts of torch moving on phase change and fluid flow in weld pool of SMAW / L.G. Tong, J.C. Gu, S.W. Yin, L. Wang, S.W. Bai // International Journal of Heat and Mass Transfer. – 2016. – Vol. 100. – P. 949–957.
  15. Походня И.К., Суптель А.М. Теплосодержание капель при сварке в углекислом газе // Автоматическая сварка. – 1970. – № 7. – С. 12–17.
  16. Улучшение структуры и свойств сварных соединений труб большого диаметра из низколегированной стали при импульсно-дуговой сварке / Ю.Н. Сараев, В.П. Безбородов, И.М. Полетика, А.В. Тютев, И.В. Никонова, Н.В. Кирилова, С.П. Севастьянов // Автоматическая сварка. – 2004. – № 12. – С. 34–38.
  17. Сараев Ю.Н. Обоснование концепции повышения безопасности и живучести технических систем, эксплуатируемых в регионах Сибири и Крайнего Севера, на основе применения адаптивных импульсных технологий сварки // Тяжелое машиностроение. – 2010. – № 8. – С. 14–19.
  18. Ланкин Ю.Н. Показатели стабильности процесса дуговой сварки плавящимся электродом // Автоматическая сварка. – 2011. – № 1. – С. 7–15.
  19. Кархин В.А. Тепловые процессы при сварке. – 2-е изд., перераб. и доп. – СПб.: Изд-во Политехн. ун-та, 2015. – 572 с. – ISBN 978-5-7422-4629-9.
  20. Рыкалин Н.Н. Расчеты тепловых процессов при сварке. – М.: Машгиз, 1951. – 296 с.
  21. Совершенствование технологии производства электродов УОНИ-13/55 / И.Н. Ворновицкий, С.А. Горбатов, Ю.А. Глушков, Р.Б. Ктиторов // Сварочное производство. – 2001. – № 1. – С. 42–44.
  22. Броек Д. Основы механики разрушения: пер. с англ. – М.: Высшая школа, 1980. – 368 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».