Структура и свойства термически обработанной литой в металлическую форму бронзы БРС10О10Н5

Обложка

Цитировать

Полный текст

Аннотация

Введение. Свинцово-оловянистые бронзы являются одними из востребованных среди материалов для производства изделий, работающих в условиях трения и износа. В большинстве случаях данные изделия наравне с высокими антифрикционными свойствами должны обладать повышенной прочностью. Однако включения свинца в данном материале заметно снижают прочность, что приводит к преждевременному разрушению. Несмотря на существующее достаточно большое количество способов повышения прочности свинцово-оловянистых бронз, некоторые из них трудно выполнимы и нестабильны в масштабах реального производства, а другие не доведены до стадии широкого практического применения. Поэтому поиск способов повышения прочностных характеристик бронзы, содержащей свинец, остается актуальной задачей. Цель работы: изучение структуры, механических и триботехнических свойств свинцово-оловянистой бронзы, легированной никелем после термической обработки. В работе исследована бронза БрС10О10Н5, полученная плавкой чистых шихтовых материалов на тиристорной установке в тигле из силицированного графита c последующей заливкой в металлическую форму. Образцы подвергали старению при температуре 300…500 °C. Методами исследования являются механические испытания на статическое растяжение и триботехнические испытания, а также спектральный анализ химического состава и металлографические исследования свинцово-оловянистой бронзы, легированной никелем. Результаты и обсуждения. Известно, что одним из способов изменения структуры и свойства материала является термическая обработка, в результате которой формируется структура, создаваемая дисперсионным разложением после закалки и старения. В результате происходит образование упорядоченных структур, что приводит к увеличению твердости до максимального значения. Установлено, что максимальная твердость (138 HB) бронзы БрС10О10Н5 достигается старением при температуре 325°C в течение четырех часов. После старения образцов происходит рост прочностных характеристик – предела текучести на 10 %, предела прочности на 24 %. Усредненные значения результатов энергодисперсионного рентгеновского спектрометрического анализа (EDS) выделенной фазы указывают на то, что укрупненные дисперсные частицы являются тройным химическим соединением, предположительно Cu9NiSn3. Исследованы триботехнические характеристики бронзы до и после старения. Было определено, что свинец в составе бронзы снижает коэффициент трения в два раза. Термическая обработка не оказала существенного влияния на коэффициент трения бронзы БрС10О10Н5. Износостойкость бронзы со свинцом после термической обработки в два раза выше, чем у бронзы до термической обработки, и в пять раз выше, чем у бронзы без свинцовых включений. Представленные результаты показывают возможности применения термической обработки для повышения прочности и износостойкости свинцово-оловянистой бронзы с добавками никеля.

Об авторах

Н. С. Клочков

Email: nikart2012@gmail.com
Национальный исследовательский Томский политехнический университет, пр. Ленина, 30, г. Томск, 634050, Россия, nikart2012@gmail.com

Ю. П. Егоров

Email: Yuri.Egorovv@yandex.ru
кандидат технических наук, доцент, Национальный исследовательский Томский политехнический университет, пр. Ленина, 30, г. Томск, 634050, Россия, Yuri.Egorovv@yandex.ru

О. М. Утьев

Email: utievv@mail.ru
Национальный исследовательский Томский политехнический университет, пр. Ленина, 30, г. Томск, 634050, Россия, utievv@mail.ru

С. Барелла

Email: silvia.barella@polimi.it
доктор технических наук, профессор, Миланский политехнический университет, Пьяцца Леонардо да Винчи, 32, г. Милан, 20133, Италия, silvia.barella@polimi.it

Список литературы

  1. Измайлов В.А., Ермолаева Н.И., Токарь В.С. Роль поведения свинца при литье и деформации слитков ЛС 58–2 // Цветные металлы. – 1995. – № 7. – С. 63–66.
  2. Ильин А.И. Повышение износостойкости и усталостной прочности некоторых антифрикционных сплавов // Исследование сплавов цветных металлов. – М.: Изд-во АН СССР, 1955. – С. 42–53.
  3. Tin and nickel influence on the structure and properties of the leaded bronze obtained by centrifugal casting / N.S. Klochkov, U.P. Egorov, C. Mapelli, I.K. Zabrodina // Materials Science Forum. – 2016. – Vol. 870. – P. 248–252. – doi: 10.4028/ href='www.scientific.net/MSF.870.248' target='_blank'>www.scientific.net/MSF.870.248.
  4. Мальцев М.В. Металлография промышленных цветных металлов и сплавов. – М.: Металлургия, 1970. – 364 с.
  5. Захаров А.М. Промышленные сплавы цветных металлов. Фазовый состав и структурные составляющие. – М.: Металлургия, 1980. – 256 с.
  6. Zhang S., Jiang B., Ding W. Dry sliding wear of Cu-15Ni-8Sn alloy // Tribology International. – 2010. – Vol. 43 (1–2). – P. 64–68. – doi: 10.1016/j.triboint.2009.04.038.
  7. Zhao J.C., Notis M.R. Spinodal decomposition, ordering transformation, and discontinuous precipitation in a Cu-15Ni-8Sn alloy // Acta Metallurgica. – 1998. – Vol. 46, iss. 12. – P. 4203–4218. – doi: 10.1016/S1359-6454(98)00095-0.
  8. Schwartz L.H., Plewes J.T. Spinodal decomposition in a Cu-9wt% Ni-6 wt% Sn-II. A critical examination of mechanical strength of spinodal alloys // Acta Metallurgica. – 1974. – Vol. 22, iss. 7. – P. 911–921. – doi: 10.1016/0001-6160(74)90058-3.
  9. Kato M., Schwartz L.H. The temperature dependence of yield stress and work hardening in spinodally decomposed Cu-10Ni-6Sn alloy // Materials Science and Engineering. – 1979. – Vol. 41, iss. 1. – P. 137–142.
  10. Cribb W.R., Ratka J.O. Copper spinodal alloys // Advanced Materials & Processes. – 2002. – Vol. 160, iss. 11. – P. 1–4.
  11. Sadi F., Servant C. Phase transformations and phase diagram at equilibrium in the Cu-Ni-Sn system // Journal of Thermal Analysis and Calorimetry. – 2007. – Vol. 90 (2). – P. 319–323. – doi: 10.1007/s10973-007-8347-6.
  12. Microstructural effects on tension behavior of Cu-15Ni-8Sn sheet / J. Caris, D. Li, J. Stephens Jr, J. Lewandowski // Materials Science and Engineering A. – 2010. – Vol. 527, iss. 3. – P. 769–781. – doi: 10.1016/j.msea.2009.08.049.
  13. Virtanen P., Tiainen T., Lepisto T. Precipitation at faceting grain boundaries of Cu-Ni-Sn alloys // Materials Science and Engineering A. – 1998. – Vol. 251, iss. 1–2. – P. 269–275. – doi: 10.1016/S0921-5093(98)00498-5.
  14. Zhang S.Z., Jiang B.H., Ding W.J. Wear of Cu-15Ni-8Sn spinodal alloy // Wear. – 2008. – Vol. 264, iss. 3–4. – P. 199–203. – doi: 10.1016/j.wear.2007.03.003.
  15. Initial stages of decomposition in Cu-9Ni-6Sn / E.G. Baburaj, U.D. Kulkarni, E.S.K. Menon, R. Krishnan // Journal of Applied Crystallography. – 1979. – Vol. 12, iss. 5. – P. 476–480. – doi: 10.1107/S0021889879013066.
  16. Gupta K.P. An expanded Cu-Ni-Sn system (copper-nickel-zinc) // Journal of Phase Equilibria. – 2000. – Vol. 21 (5). – P. 479–484.
  17. Пресняков А.А., Новиков А.В. Изучение механических свойств оловянистых бронз с добавками цинка, фосфора, свинца и никеля // Труды Института ядерной физики АН КазССР. – Алма-Ата, 1959. – Т. 2. – С. 41–73.
  18. Лакисов П.А. Повышение качества отливок из оловянных бронз // Фасонное литье медных сплавов. – М.: Машгиз, 1957. – С. 44–51.
  19. Семенов К.Г., Колосков В.Ф., Чурсин В.М. Разработка технологии производства качественных отливок из чушковых оловянных бронз // Литейное производство. – 1994. – № 7. – С. 10–11.
  20. Левашов Е.А. Обеспечение единства измерений физико-механических и трибологических свойств наноструктурированных поверхностей [Электронный ресурс]. – URL: http://www.nanometer.ru/2009/02/11/nanometrologia_58090.html (дата обращения: 13.05.2019).

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».