Структура сплава Ti-40Nb, сформированного высокоэнергетическими методами

Обложка

Цитировать

Полный текст

Аннотация

Введение. Сплав Ti–40 мас. % Nb (Ti–40 Nb) – перспективный материал для медицинских приложений, так как имеет низкий модуль упругости, что определяет механическую совместимость имплантата с костной тканью. Передовыми методами получения изделий из сплава Ti–40 Nb являются интенсивная пластическая деформация (ИПД) и селективное лазерное сплавление (CЛC). Представленные методы имеют разную природу и влияние на фазовый состав, строение и свойства изделия, что требует глубоких структурных исследований. Цель работы – оценка структурных характеристик сплава Ti–40 Nb, полученного в условиях высокоэнергетического воздействия методами ИПД и СЛС, с учетом неоднородности элементного состава. Объекты исследования. Слитки сплава получали электродуговой плавкой. ИПД закаленных слитков осуществлялась последовательным прессованием в симметричный канал, многоосевой ковкой и прокаткой. СЛС порошка механически легированного сплава выполнялось на установке ВАРИСКАФ–100МВС. Методы исследования. Оптическая и растровая электронная микроскопия, энергодисперсионный микроанализ, рентгеноструктурный анализ, определение модуля упругости и нанотвердости методом невосстановленного отпечатка. Результаты. В процессе кристаллизации слитка формируется дендритная структура, состоящая из β-фазы с внутрикристаллической ликвацией и разностью в концентрации Nb до 6 мас. %. После закалки слитка в зонах, обедненных Nb, формируется мартенситная структура α²-фазы. ИПД слитка приводит к устранению ликвации, обратному α² → β + α-превращению и формированию ультрамелкозернистой структуры с оптимальным комплексом физико-механических свойств. СЛС формирует структуру, состоящую из микронных зерен β-фазы с прослойками по границам зерен неравновесной α''-фазы. Образовавшуюся в сплаве внутрикристаллическую ликвацию с разностью в концентрации Nb до 27 мас. %. предложено устранять последующей термической обработкой. Заключение. Рассмотренные высокоэнергетические методы получения медицинских имплантатов, ИПД и СЛС оказывают значительное влияние на структуру сплава Ti–40 Nb. Характер воздействия определяется самим методом и формирующейся неоднородностью элементного состава.

Об авторах

Ж. Г. Ковалевская

Email: zhanna_kovalevskaya@mail.ru
кандидат технических наук, доцент, 1. Институт физики прочности и материаловедения СО РАН, пр. Академический, 2/4, г. Томск, 634055, Россия; 2. Национальный исследовательский Томский политехнический университет, пр. Ленина, 30, г. Томск, 634050, Россия, zhanna_kovalevskaya@mail.ru

Ю. П. Шаркеев

Email: sharkeev@ispms.tsc.ru
доктор физико-математических наук, профессор, 1. Институт физики прочности и материаловедения СО РАН, пр. Академический, 2/4, г. Томск, 634055, Россия; 2. Национальный исследовательский Томский политехнический университет, пр. Ленина, 30, г. Томск, 634050, Россия, sharkeev@ispms.tsc.ru

М. А. Химич

Email: makhimich@gmail.com
1. Институт физики прочности и материаловедения СО РАН, пр. Академический, 2/4, г. Томск, 634055, Россия; 2. Национальный исследовательский Томский государственный университет, пр. Ленина, 36, г. Томск, 634050, Россия, makhimich@gmail.com

А. Ю. Ерошенко

Email: eroshenko@ispms.tsc.ru
кандидат технических наук, Институт физики прочности и материаловедения СО РАН, пр. Академический, 2/4, г. Томск, 634055, Россия, eroshenko@ispms.tsc.ru

П. В. Уваркин

Email: uvarkin@ispms.tsc.ru
Институт физики прочности и материаловедения СО РАН, пр. Академический, 2/4, г. Томск, 634055, Россия, uvarkin@ispms.tsc.ru

Список литературы

  1.    Microstructure and mechanical behavior of metal injection molded Ti-Nb binary alloy as biomedical material / D. Zhao, K. Chang, T. Ebel, H. Nie, R. Willumeit, F. Pyczak // Journal of the Mechanical Behavior of Biomedical Materials. – 2013. – Vol. 28. – P. 71–182. – doi: 10.1016/j.jmbbm.2013.08.013.
  2.    Niinomi M., Nakai M., Hieda J. Development of new metallic alloys for biomedical applications // Acta Biomaterialia. – 2012. – Vol. 8, iss. 11. – P. 3888–3903. – doi: 10.1016/j.actbio.2012.06.037.
  3.    Microstructure and dry wear properties of Ti-Nb alloys for dental prostheses / L. Xu, S.L. Xiao, J. Tian, Y. Chen, Y. Huang // Transactions of Nonferrous Metals Society of China. – 2009. – Vol. 19, iss. 3. – P. 639–644. – doi: 10.1016/S1003-6326(10)60124-0.
  4.    Structure and properties of micro-arc calcium phosphate coatings on pure titanium and Ti-40Nb alloy / Yu. Sharkeev, E. Komarova, M. Sedelnikova, Z. Sun, Q. Zhu, J. Zhang, T.Tolkacheva, P. Uvarkin // Transactions of Nonferrous Metals Society of China. – 2017. – Vol. 27, iss. 1. – P. 125−133. – doi: 10.1016/S1003-6326(17)60014-1.
  5.    Electrochemical corrosion behavior of a Ti-35Nb alloy for medical prostheses / A. Cremasco, W.R. Osório, C.M.A. Freire, A. Garcia, R. Caram // Electrochimica Acta. – 2008. – Vol. 53, iss. 14. – P. 4867–4874. – doi: 10.1016/j.electacta.2008.02.011.
  6.    Beta Ti аlloys with low Young’;s modulus / T. Ozaki, H. Matsumoto, S. Watanabe, S. Hanada // Materials Transactions. – 2004. – Vol. 45, iss. 8. – P. 2776–2779. – doi: 10.2320/matertrans.45.2776.
  7.    Biomedical titanium alloys with Young’;s moduli close to that of cortical bone / M. Niinomi, Y. Liu, M. Nakai, H. Liu, H. Li // Regenerative Biomaterials. – 2016. – Vol. 3, iss. 3. – P. 173–185. – doi: 10.1093/rb/rbw016.
  8.    Moffat D.L., Kattner U.R. The stable and metastable Ti-Nb phase diagrams // Metallurgical Transactions A. – 1988. – Vol. 19, iss. 10. – P. 2389–2397. – doi: 10.1007/BF02645466.
  9.    Плавка и литье титановых сплавов / А.Л. Андреев, Н.Ф. Аношкин, Г.А. Бочвар и др. – М.: Металлургия, 1994. – 368 с. – (Титановые сплавы).
  10. Губкин И.Н. Заметки о технологии выплавки и переработки Nb-Ti слитков в прутки. – М.: ВНИИНМ, 2006. – 115 с.
  11. Enhancement of mechanical properties of biocompatible Ti–45Nb alloy by hydrostatic extrusion / K. Ozaltin, W. Chrominski, M. Kulczyk, A. Panigrahi, J. Horky, M. Zehetbauer, M. Lewandowska // Journal of Materials Science. – 2014. – Vol. 49, iss. 20. – P. 6930–6936. – doi: 10.1007/s10853-014-8397-7.
  12. Mechanical properties, structural and texture evolution of biocompatible Ti–45Nb alloy processed by severe plastic deformation / A. Panigrahia, B. Sulkowskia, T. Waitza, K. Ozaltinc, W. Chrominskic, A. Pukenasd, J. Horkya, M. Lewandowskac, W. Skrotzkid, M. Zehetbauera // Journal of the Mechanical Behavior of Biomedical Materials. – 2016. – Vol. 62. – P. 93–105. – doi: 10.1016/j.jmbbm.2016.04.042.
  13. Influence of testing orientation on mechanical properties of Ti45Nb deformed by high pressure torsion / B. Völker, N. Jäger, M. Calin, M. Zehetbauer, J. Eckert, A. Hohenwarter // Materials and Design. – 2017. – Vol. 114. – P. 40–46. – doi: 10.1016/j.matdes.2016.10.035.
  14. Phase transformations and mechanical properties of biocompatible Ti-16.1Nb processed by severe plastic deformation / A. Panigrahi, M. Bönisch, T. Waitz, E. Schafler, M. Calin, J. Eckert, W. Skrotzki, M. Zehetbauer // Journal of Alloys and Compounds. – 2015. – Vol. 628. – P. 434–441. – doi: 10.1016/j.jallcom.2014.12.159.
  15. Severe plastic deformation of Ti74Nb26 shape memory alloys / J. Ma, I. Karaman, B. Kockar, H.J. Maier, Y.I. Chumlyakov // Materials Science and Engineering: A. – 2011. – Vol. 528, iss. 25–26. – P. 7628–7635. – doi: 10.1016/j.msea.2011.06.051.
  16. Texture evolution in a Ti-Ta-Nb alloy processed by severe plastic deformation / V.D. Cojocaru, D. Raducanu, T. Gloriant, I. Cinca // JOM. – 2012. – Vol. 64, iss. 5. – P. 572–581. – doi: 10.1007/s11837-012-0312-6.
  17. New developments of Ti-based alloys for biomedical applications / Y. Li, C. Yang, H. Zhao, S. Qu, X. Li, Y. Li // Materials. – 2014. – vol. 7, iss. 3. – p. 1709–1800. – doi: 10.3390/ma7031709.
  18. Shahali H., Jaggessar A., Yarlagadda P. Kdv. Recent advances in manufacturing and surface modification of titanium orthopaedic applications // Procedia Engineering. – 2017. – Vol. 174. – P. 1067–1076. – doi: 10.1016/j.proeng.2017.01.259.
  19. Production of porous β-type Ti-40Nb alloy for biomedical applications: comparison of selective laser melting and hot pressing / K. Zhuravleva, M. Bönisch, K.G. Prashanth, U. Hempel, A. Helth, T. Gemming, M. Calin, S. Scudino, L. Schultz, J. Eckert, A. Gebert // Materials. – 2013. –Vol. 6, iss. 12. – P. 5700–5712. – doi: 10.3390/ma6125700.
  20. Selective laser melting of Ti-45Nb alloy / H. Schwab, K.G. Prashanth, L. Lober, U. Kuhn, J. Eckert // Materials. – 2015. – Vol. 5, iss. 2. – P. 686–694. – doi: 10.3390/met5020686.
  21. Numerical study of mechanical properties of nanoparticlesof β-type Ti-Nb alloy under conditions identical to laser sintering. Multilevel approach / A.Yu. Nikonov, A.M. Zharmukhambetova, A.V. Ponomareva, A.I. Dmitriev // Physical Mesomechanics. – 2018. – Vol. 21, N 1. – P. 43–51.
  22. Rationally designed meta-implants: a combination of auxetic and conventional meta-biomaterials / H.M.A. Kolken, Sh. Janbaz, S.M.A. Leeflang, K. Lietaert, H.H. Weinans, A.A. Zadpoor // Materials Horizons. – 2018. – Vol. 5, iss. 1. – P. 28–35. – doi: 10.1039/c7mh00699c.
  23. The biomimetic design and 3D printing of customized mechanical properties porous Ti6Al4V scaffold for load-bearing bone reconstruction / B. Zhang, X. Pei, C. Zhou, Y. Fan, Q. Jiang, A. Ronca, U. D'Amora, Y. Chen, H. Li, Y. Sun, X. Zhang // Materials and Design. – 2018. – Vol. 152. – P. 30–39. – doi: 10.1016/j.matdes.2018.04.065.
  24. Evaluation of physical and mechanical properties of structural components of Ti-Nb alloy / Zh.G. Kovalevskaya, M.A. Khimich, A.V. Belyakov, I.A. Shulepov // Advanced Materials Research. – 2014. – Vol. 1040. – P. 39–42. – doi: 10.4028/ href='www.scientific.net/AMR.1040.39' target='_blank'>www.scientific.net/AMR.1040.39.
  25. Structural and phase state of Ti-Nb alloy at selective laser melting of the composite powder / Yu.P. Sharkeev, A.Yu. Eroshenko, Zh.G. Kovalevskaya, A.A. Saprykin, E.A. Ibragimov, I.A. Glukhov, M.A. Khimich, P.V. Uvarkin, E.V. Babakova // Russian Physics Journal. – 2016. – Vol. 59, iss. 3. – P. 430–434. – doi: 10.1007/s11182-016-0790-z.
  26. Исследование строения и фазового состава порошков Ti и Nb после механической активации / Ю.П. Шаркеев, Ж.Г. Ковалевская, М.А. Химич, Е.А. Ибрагимов, А.А. Сапрыкин, В.И. Яковлев, В.А. Батаев // Обработка металлов (технология, оборудование, инструменты). – 2016. – № 1 (70). – С. 42–51. – doi: 10.17212/1994-6309-2016-1-42-51.
  27. Microstructure and mechanical properties of Ti40Nb alloy after severe plastic deformation / Yu.P. Sharkeev, A.Yu. Eroshenko, I.A. Glukhov, Q. Zhu, A.I. Tolmachev // AIP Conference Proceedings. – 2014. – Vol. 1623, iss. 1. – P. 567–570. – doi: 10.1063/1.4899008.
  28. Strength and ductility-related properties of ultrafine grained two-phase titanium alloy produced by warm multiaxial forging / S. Zherebtsova, E. Kudryavtseva, S. Kostjuchenkoa, S. Malyshevab, G. Salishcheva // Materials Science and Engineering A. – 2012. – Vol. 536. – P. 190–196. – doi: 10.1016/j.msea.2011.12.102.
  29. Особенности структурно-фазового состояния сплава Ti-6Al-4V при формировании изделий с использованием электронно-лучевой проволочной аддитивной технологии / Н.Л. СавченкоБ А.В. Воронцов, В.Р. Утяганова, А.А. Елисеев, В.Е. Рубцов, Е.А. Колубаев // Обработка металлов (технология, оборудование, инструменты). – 2018. – Т. 20, № 4. – С. 60–71. – doi: 10.17212/1994-6309-2018-20.4-60-71.
  30. Cantor B. Rapidly quenched metals III. – Brighton: Metals Society, 1978. – 470 p.
  31. Anisotropy of mechanical properties in high-strength ultra-fine-grained pure Ti processed via a complex severe plastic deformation route / I. Sabirov, M.T. Perez-Prado, J.M. Molina-Aldareguia, I.P. Semenova, G.Kh. Salimgareeva, R.Z. Valiev // Scripta Materialia. – 2011. – Vol. 64, iss. 1. – P. 69–72. – doi: 10.1016/j.scriptamat.2010.09.006.
  32. Meredith C.S., Khan A.S. Texture evolution and anisotropy in the thermo-mechanical response of UFG Ti processed via equal channel angular pressing // International Journal of Plasticity. – 2012. – Vol. 30. – P. 202–217. – doi: 10.1016/j.ijplas.2011.10.006.
  33. Martensitic transformation, shape memory effect and superelasticity of Ti-Nb binary alloys / Y. Kim, Y. Ikehara, J.I. Kim, H. Yosoda, S. Miyazaaki // Acta Materialia. – 2006. – Vol. 54, iss. 9. – P. 2419–2429. – doi: 10.1016/j.actamat.2006.01.019.
  34. Influence of cooling rate on microstructure of Ti-Nb alloy for orthopedic implants / C.R.M. Afonso, G.T. Aleixo, A.J. Ramirez, R. Caram // Materials Science and Engineering: C. – 2007. – Vol. 27, iss. 4. – P. 908–913. – doi: 10.1016/j.msec.2006.11.001.
  35. Effects of thermomechanical history and environment on the fatigue behavior of (β)-Ti-Nb implant alloys / A. Reck, S. Pilz, U. Thormann, V. Alt, A. Gebert, M. Calin, C. Heiss, M. Zimmermann // MATEC Web of Conferences. – 2018. – Vol. 165. – P. 06001. – doi: 10.1051/matecconf/201816506001.
  36.            Brandon D., Kaplan W.D. Microstructural characterization of materials. – New York: John Wiley and Sons, 2013. – 552 p.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».