Влияние низкотемпературной цементации в плазме электронного пучка на упрочнение и шероховатость поверхности метастабильной аустенитной стали

Обложка

Цитировать

Полный текст

Аннотация

Введение. Низкотемпературная плазменная цементация является эффективным способом повышения твердости термически неупрочняемых аустенитных хромоникелевых сталей. Использование низкоэнергетичных (до 1 кэВ) электронных пучков для плазменного модифицирования поверхности позволяет не только эффективно генерировать плазму, но и нагревать до высокой температуры помещаемые в плазму объекты без использования дополнительного внешнего нагрева. Однако в литературе отсутствуют сведения о цементации аустенитных нержавеющих сталей с использованием плазмы, генерируемой электронным пучком. Существенное влияние на уровень обеспечиваемых характеристик и формируемый фазовый состав аустенитных сталей оказывает температура цементации. Важно также учитывать, что применение ионно-плазменных химико-термических обработок может приводить к изменению шероховатости обрабатываемой поверхности. Цель работы заключается в изучении влияния температуры цементации в плазме низкоэнергетичного электронного пучка в диапазоне ТЦ = 350…500 °С на фазовый состав, шероховатость, глубину и упрочнение цементованного слоя аустенитной стали 04Х17Н8Т (AISI 321). Методы исследования: измерение микротвердости, рентгеноструктурный фазовый анализ, сканирующая электронная микроскопия и оптическая профилометрия. Результаты и обсуждение. Цементация в плазме, генерируемой электронным пучком, при ТЦ = 350…500 °С обеспечивает повышение микротвердости поверхности аустенитной стали в 5,5 раз (до ~ 1100 HV 0,025). Установлено, что глубина упрочненного слоя в сильной степени зависит от температуры цементации и составляет 25 мкм при ТЦ = 350 °С, а при дальнейшем повышении температуры цементации возрастает вплоть до 200 мкм при ТЦ = 500 °С. Эффективное упрочнение поверхностного слоя нержавеющей стали связано с формированием пересыщенного углеродом аустенита γC и карбидов Cr23C6 при ТЦ = 350…500 °С, а также карбидов Cr7C3 при ТЦ = 500 °С. Показано, что цементация электрополированной поверхности стали при температурах 400…500 °С сопровождается ростом параметра шероховатости Ra до 0,73…1,06 мкм. Снижение температуры цементации до ТЦ = 350 °С приводит к формированию поверхности со значительно более низким параметром шероховатости Ra = 0,15 мкм.

Об авторах

П. А. Скорынина

Email: skorynina@imach.uran.ru
Институт машиноведения УрО РАН, ул. Комсомольская, 34, г. Екатеринбург, 620049, Россия, skorynina@imach.uran.ru

А. В. Макаров

Email: avm@imp.uran.ru
доктор технических наук, 1. Институт машиноведения УрО РАН, ул. Комсомольская, 34, г. Екатеринбург, 620049, Россия; 2. Институт физики металлов им. М.Н. Михеева УрО РАН, ул. С. Ковалевской, 18, г. Екатеринбург, 620108, Россия; 3. Уральский федеральный университет им. первого Президента России Б.Н. Ельцина, ул. Мира, 19, г. Екатеринбург, 620002, Россия, avm@imp.uran.ru

А. И. Меньшаков

Email: menshakovandrey@mail.ru
кандидат технических наук, Институт электрофизики УрО РАН, ул. Амундсена, 106, г. Екатеринбург, 620016, Россия, menshakovandrey@mail.ru

А. Л. Осинцева

Email: osintseva@imach.uran.ru
кандидат технических наук, Институт машиноведения УрО РАН, ул. Комсомольская, 34, г. Екатеринбург, 620049, Россия, osintseva@imach.uran.ru

Список литературы

  1. Gatey A.M., Hosmani S.S., Singh R.P. Surface mechanical attrition treated AISI 304L steel: role of process parameters // Surface Engineering. – 2016. – Vol. 32, iss. 1. – P. 69–78. – doi: 10.1179/1743294415Y.0000000056.
  2. Characterization of the phase transformation in a nanostructured surface layer of 304 stainless steel induced by high-energy shot peening / Z. Ni, X. Wang, J. Wang, E. Wu // Physica B-Condensed Matter. – 2003. – Vol. 334. – P. 221–228. – doi: 10.1016/S0921-4526(03)00069-3.
  3. Effect of structure evolution induced by ultrasonic peening on the corrosion behavior of AISI-321 stainless steel / B.N. Mordyuk, G.I. Prokopenko, M.A. Vasylyev, M.O. Iefimov // Materials Science and Engineering: A. – 2007. – Vol. 458, iss. 1–2. – P. 253–261. – doi: 10.1016/j.msea.2006.12.049.
  4. Baraz V.R., Kartak B.R., Mineeva O.N. Special features of friction hardening of austenitic steel with unstable γ-phase // Metal Science and Heat Treatment. – 2011. – Vol. 52, iss. 9. – P. 473–475. – doi: 10.1007/s11041-010-9302-x.
  5. Повышение трибологических свойств аустенитной стали 12Х18Н10Т наноструктурирующей фрикционной обработкой / А.В. Макаров, П.А. Скорынина, А.Л. Осинцева, А.С. Юровских, Р.А. Саврай // Обработка металлов (технология, оборудование, инструменты). – 2015. – № 4 (69). – С. 80–92. – doi: 10.17212/1994-6309-2015-4-80-92.
  6. Baraz V.R., Fedorenko O.N. Special features of friction treatment of steels of the spring class // Metal Science and Heat Treatment. – 2016. – Vol. 57, iss. 11–12. – P. 652–655. – doi: 10.1007/s11041-016-9937-3.
  7. Effect of the conditions of the nanostructuring frictional treatment process on the structural and phase states and the strengthening of metastable austenitic steel / A.V. Makarov, P.A. Skorynina, A.S. Yurovskikh, A.L. Osintseva // Physics of Metals and Metallography. – 2017. – Vol. 118, iss. 12. – P. 1225–1235. – doi: 10.1134/S0031918X17120092.
  8. Narkevich N.A., Shulepov I.A., Mironov Yu.P. Structure, mechanical, and tribotechnical properties of an austenitic nitrogen steel after frictional treatment // Physics of Metals and Metallography. – 2017. – Vol. 118, iss. 4. – P. 339–406. – doi: 10.1134/S0031918X17020090.
  9. Microstruсture and mechanical properties of friction stir processed AISI 316L stainless steel / M. Hajian, A. Abdollah-zadeh, S.S. Rezaei-Nejad, H. Assadi, S.M.M. Hadavi, K. Chung, M. Shokouhimehr // Materials and Design. – 2015. – Vol. 67. – P. 82–94. – doi: 10.1016/j.matdes.2014.10.082.
  10. Liang W. Surface modification of AISI 304 austenitic stainless steel by plasma nitriding // Applied Surface Science. – 2003. – Vol. 211. – P. 308–314. – doi: 10.1016/S0169-4332(03)00260-5.
  11. Microstructure and dry sliding wear resistance evaluation of plasma nitride austenitic stainless steel type AISI 316LN against different sliders / A. Devaraju, A. Elayaperumal, J. Alphonsa, S.V. Kailas, S. Venugopal // Surface and Coatings Technology. – 2012. – Vol. 207. – P. 406–412. – doi: 10.1016/j.surfcoat.2012.07.031.
  12. Gavrilov N.V., Mamaev A.S., Chukin A.V. Nitriding of stainless steel in plasma of a pulse electron beam // Technical Physics Letters. – 2016. – Vol. 42, iss. 5. – P. 491–494. – doi: 10.1134/S1063785016050096.
  13. Gavrilov N.V., Mamaev A.S., Chukin A.V. Nitriding of stainless steel in electron beam plasma in the pulsed and DC generation modes // Journal of Surface Investigation. – 2017. – Vol. 11, iss. 6. – P. 1167–1172. – doi: 10.1134/S1027451017060076.
  14. Cao Y., Ernst F., Michal G.M. Colossal carbon supersaturation in austenitic stainless steels carburized at low temperature // Acta Materialia. – 2003. – Vol. 51. – P. 4171–4181. – doi: 10.1016/S1359-6454(03)00235-0.
  15. Tokaji K., Kohyama K., Masayuki A. Fatigue behaviour and fracture mechanism of a 316 stainless steel hardened by carburizing // International Journal of Fatigue. – 2004. – Vol. 26, iss. 5. – P. 543–551. – doi: 10.1016/j.ijfatigue.2003.08.024.
  16. Carbide precipitation in austenitic stainless steel carburized at low temperature / F. Ernst, Y. Cao, G.M. Michal, A.H. Heuer // Acta Materialia. – 2007. – Vol. 55. – P. 1895–1906. – doi: 10.1016/j.actamat.2006.09.049.
  17. Cheng L.H., Hwang K.S. Surface hardening of powder injection molded 316l stainless steels through low-temperature carburization // Metallurgical and Materials Transactions A. – 2013. – Vol. 44A, iss. 2. – P. 827–834. – doi: 10.1007/s11661-012-1458-0.
  18. Influence of the countermaterial on the dry sliding friction and wear behaviour of low temperature carburized AISI316L steel / L. Ceschini, C. Chiavari, A. Marconi, C. Martini // Tribology International. – 2013. – Vol. 67. – P. 36–43. – doi: 10.1016/j.triboint.2013.06.013.
  19. Structure and wear resistance of 0Cr17Ni14Mo2 austenitic stainless steel after low temperature gas carburising / F. Ma, L. Pan, L.J. Zhang, Y.F. Zhu, P. Li, M. Yang // Materials Research Innovations. – 2014. – Vol. 18. – P. 1023–1027. – doi: 10.1179/1432891714Z.000000000551.
  20. Sun Y. Tribocorrosion behavior of low temperature plasma carburized stainless steel // Surface and Coatings Technology. – 2013. – Vol. 228. – P. S342–S348. – doi: 10.1016/j.surfcoat.2012.05.105.
  21. Surface modification of austenitic steels by low-temperature carburization / I. Ciancaglioni, R. Donnini, S. Kaciulis, A. Mezzi, R. Montanari, N. Ucciardello, G. Verona-Rinati // Surface and Interface Analysis. – 2012. – Vol. 44, iss. 8. – P. 1001–1004. – doi: 10.1002/sia.4894.
  22. Modification of S phase on austenitic stainless steel using fine particle shot peening / M. Tsujikawa, M. Egawa, T. Sone, N. Ueda, T. Okano, K. Higashi // Surface and Coatings Technology. – 2013. – Vol. 228. – P. S318–S322. – doi: 10.1016/j.surfcoat.2012.05.111.
  23. Sun Y. Kinetics of low temperature plasma carburizing of austenitic stainless steels // Journal of Materials Processing Technology. – 2005. – Vol. 168. – P. 189–94. – doi: 10.1016/j.jmatprotec.2004.10.005.
  24. Carburization of austenitic and ferritic steels in carbon-saturated sodium: preliminary results on the diffusion coefficient of carbon at 873 K / M. Romedenne, F. Rouillard, B. Dupray, D. Hamon, M. Tabarant, D. Monceau // Оxidation of Metals. – 2016. – Vol. 87. – P. 643–653. – doi: 10.1007/s11085-017-9733-5.
  25. Abraha P., Yoshikawa Y., Katayama Y. Surface modification of steel surfaces by electron beam excited plasma processing // Vacuum. – 2009. – Vol. 83, iss. 3. – P. 497–500. – doi: 10.1016/j.vacuum.2008.04.073.
  26. Влияние непрерывного и газоциклического плазменного азотирования на качество наноструктурированной поверхности аустенитной нержавеющей стали / А.В. Макаров, Н.В. Гаврилов, Г.В. Самойлова, А.С. Мамаев, А.Л. Осинцева, Р.А. Саврай // Обработка металлов (технология, оборудование, инструменты). – 2017. – № 2 (75). – С. 55–66. – doi: 10.17212/1994-6309-2017-2-55-66.
  27. Sun Y., Li X., Bell T. Structural characteristics of low temperature plasma carburised austenitic stainless steel // Materials Science and Technology. – 1999. – Vol. 15, iss. 10. – P. 1171–1178. – doi: 10.1179/026708399101505077.
  28. Tong X., Zhang T., Ye W. Effect of carburizing atmosphere proportion on low temperature plasma carburizing of austenitic stainless steel // Advanced Materials, Mechanics and Industrial Engineering. – 2014. – Vol. 598. – P. 90–93. – doi: 10.4028/ href='www.scientific.net/AMM.598.90' target='_blank'>www.scientific.net/AMM.598.90.
  29. Effect of shot peening and treatment temperature on wear and corrosion resistance of sequentially plasma treated AISI 316L steel / M.R. Menezes, C. Godoy, V.T.L. Buono, M.M.M. Schvartzman, J.C.A.B. Wilson // Surface and Coatings Technology. – 2017. – Vol. 309. – P. 651–662. – doi: 10.1016/j.surfcoat.2016.12.037.
  30. Borgioli F., Galvanetto E., Bacci T. Influence of surface morphology and roughness on water wetting properties of low temperature nitrided austenitic stainless steels // Materials Characterization. – 2014. – Vol. 95. – P. 278–284. – doi: 10.1016/j.matchar.2014.07.006.
  31. Влияние предварительной деформационной обработки на упрочнение и качество азотированной поверхности аустенитной нержавеющей стали / А.В. Макаров, Г.В. Самойлова, Н.В. Гаврилов, А.С. Мамаев, А.Л. Осинцева, Р.А. Саврай // Вектор науки Тольяттинского государственного университета. – 2017. – № 4 (42). – С. 67–74. – doi: 10.18323/2073-5073-2017-4-67-74.
  32. Металловедение и термическая обработка стали. В 3 т. Т. 2: справочник / под ред. М.Л. Бернштейна, А.Г. Рахштадта. – Изд. 3-е, перераб. и доп. – М.: Металлургия, 1983. – 368 с.
  33. Горелик С.С., Расторгуев Л.Н., Скаков Ю.А. Рентгенографический и электроннооптический анализ. – М.: Металлургиздат, 1970. – 366 с.
  34. Effect of heating on the structure, phase composition and micromechanical properties of the metastable austenitic steel strengthened by nanostructuring frictional treatment / A.V. Makarov, P.A. Skorynina, E.G. Volkova, A.L. Osintseva // The Physics of Metals and Metallography. – 2018. – Vol. 119, iss. 12. – P. 1196–1203. – doi: 10.1134/S0031918X18120116.
  35. Improvement of the mechanical properties of austenitic stainless steel after plasma nitriding / E. Menthe, A. Bulak, J. Olfe, A. Zimmermann, K.T. Rie // Surface and Coatings Technology. – 2000. – Vol. 133–134. – P. 259–263. – doi: 10.1016/S0257-8972(00)00930-0.
  36. Duarte M.C.S., Godoya C., Wilson J.C.A.B. Analysis of sliding wear tests of plasma processed AISI 316L steel // Surface and Coatings Technology. – 2014. – Vol. 260. – P. 316–325. – doi: 10.1016/j.surfcoat.2014.07.094.
  37. Effect of preliminary nanostructuring frictional treatment on the efficiency of nitriding of metastable austenitic steel in electron beam plasma / A.V. Makarov, G.V. Samoilova, N.V. Gavrilov, A.S. Mamayev, A.L. Osintseva, T.E. Kurennykh, R.A. Savrai // AIP Conference Proceedings. – 2017. – Vol. 1915. – P. 030011-1–030011-5. – doi: 10.1063/1.5017331.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».