Исследования достоверности диагностирования трещин по искажениям портретов вынужденных колебаний

Обложка

Цитировать

Полный текст

Аннотация

Введение. Один из способов вибрационного диагностирования усталостных трещин в металлических элементах планера самолета основан на анализе портретов вынужденных колебаний объектов контроля. Оценка достоверности этого способа применительно к реальным конструкциям является актуальной задачей. Цель работы: обеспечение достоверности обнаружения трещин в металлических конструкциях по нелинейным искажениям портретов колебаний. Методика исследований. С помощью источников гармонических вибраций в конструкции создавались колебания, регистрируемые акселерометрами. Сигналы датчиков представлялись в виде портрета колебаний: вертикальная развертка пропорциональна сигналу, а горизонтальная – первой гармонике сигнала, сдвинутой по фазе на π/2. Возникновение трещины сопровождается искажениями портретов колебаний. Для численной оценки искажений из ряда Фурье для портрета вычиталась первая гармоника, определялся абсолютный максимум остатка за период, величина максимума относилась к амплитуде первой гармоники и принималась за параметр искажений. По расположениям максимумов искажений определялись места образования трещин. При этом менялись амплитуды колебаний конструкции и способы нормирования параметра искажений, оценивались электрические помехи в системах испытательного оборудования. Результаты и обсуждения. Достоверность обнаружения усталостных трещин по искажениям портретов колебаний оценивалась на примере диагностирования металлической панели фюзеляжа самолета. Установлено влияние амплитуды вибраций панели, способа нормирования искажений портретов колебаний и уровня электрических помех в системе возбуждения на эффективность диагностирования трещин. Для повышения достоверности диагностирования дефектов предложен способ математической обработки результатов испытаний, позволяющий исключить из анализа исходное состояние объекта контроля; отследить динамику изменений его состояния и зафиксировать развитие каждого дефекта в отдельности; устранить влияние системы крепления, которая может вносить нелинейности в колебания объекта испытаний. Представлен результат обнаружения трещин в нервюрах крыла самолета.

Об авторах

В. А. Бернс

Email: v.berns@yandex.ru
доктор технических наук, доцент, 1. Сибирский научно-исследовательский институт авиации им. С.А. Чаплыгина, ул. Ползунова, 21, г. Новосибирск, 630051, Россия; 2. Новосибирский государственный технический университет, пр. К. Маркса, v.berns@yandex.ru

Е. П. Жуков

Email: Zh-EP@yandex.ru
Сибирский научно-исследовательский институт авиации им. С.А. Чаплыгина, ул. Ползунова, 21, г. Новосибирск, 630051, Россия, Zh-EP@yandex.ru

П. А. Лакиза

Email: qinterfly@gmail.com
Сибирский научно-исследовательский институт авиации им. С.А. Чаплыгина, ул. Ползунова, 21, г. Новосибирск, 630051, Россия, qinterfly@gmail.com

Е. А. Лысенко

Email: mla340@iss-reshetnev.ru
кандидат технических наук, «Информационные спутниковые системы» им. академика М. Ф. Решетнёва, ул. Ленина, 52, г. Железногорск, 662972, Россия, mla340@iss-reshetnev.ru

Список литературы

  1. Жуков Р.В. Обзор некоторых стандартов ISO/TC-108 в области диагностики машинного оборудования // Контроль. Диагностика. – 2004. – № 12. – С. 61–66.
  2. Неразрушающий контроль. Т. 7, кн. 2. Вибродиагностика: справочник / Ф.Я. Балицкий, А.В. Барков, Н.А. Баркова и др. – М.: Машиностроение, 2005. – 829 с. – ISBN 5-217-03298-7.
  3. Костюков В.Н., Науменко А.П. Основы виброакустической диагностики и мониторинга машин: учебное пособие. – Омск: Изд-во ОмГТУ, 2011. – 360 с. – ISBN 978-5-8149-1101-8.
  4. Bachschmid N., Pennacchi P., Tanzi E. Cracked rotors: a survey on static and dynamic behaviour including modelling and diagnosis. – Berlin; Heidelberg: Springer-Verlag, 2010. – 408 p. – ISBN 978-3-642-01485-7.
  5. Tiwari R. Rotor systems: analysis and identification. – Boca Raton: CRC Press, 2017. – 1069 p. – ISBN 978-1-138-03628-4.
  6. Вибродиагностика авиационных конструкций. – М.: ГосНИИГА, 1986. – 95 с. – (Труды Государственного научно-исследовательского института гражданской авиации; вып. 256).
  7. Постнов В.А. Определение повреждений упругих систем путем математической обработки частотных спектров, полученных из эксперимента // Известия РАН. Механика твердого тела. – 2000. – № 6. – С. 155–160.
  8. Косицын А.В. Метод вибродиагностики дефектов упругих конструкций на основе анализа собственных форм колебаний // Приборы и методы измерений. – 2011. – № 2 (3). – С. 129–135.
  9. Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review: Technical report LA-13070-MS / S.W. Doebling, C.R. Farrar, M.B. Prime, D.W. Shevitz; Los Alamos National Laboratory. – Los Alamos, NM, 1996. – 132 p.
  10. Dilena M., Morassi А. Damage detection in discrete vibrating systems // Journal of Sound and Vibration. – 2006. – Vol. 289. – P. 830–850. – doi: 10.1016/j.jsv.2005.02.020.
  11. Perera R., Fang S.-E., Huerta С. Structural crack detection without updated baseline model by single and multiobjective optimization // Mechanical System and Signal Processing. – 2009. – Vol. 23, iss. 3. – P. 752–768. – doi: 10.1016/j.ymssp.2008.06.010.
  12. Barbieri N., Barbieri R. Study of damage in beams with different boundary conditions // International Journal of Civil, Environmental, Structural, Construction and Architectural Engineering. – 2013. – Vol. 7, N 6. – P. 399–405.
  13. Kessler S.S., Spearing M.S., Soutis C. Structural health monitoring in composite materials using Lamb wave methods // Smart Materials and Structures. – 2002. – Vol. 11. – P. 269–278. – doi: 10.1999/1307-6892/9351.
  14. Nonlinear acoustics for fatigue crack detection – experimental investigations of vibro-acoustic wave modulations / A. Klepka, W.J. Staszewski, R.B. Jenal, M. Szwedo, J. Iwaniec, T. Uhl // Structural Health Monitoring. – 2011. – Vol. 11, iss.  2. – P. 197–211. – doi: 10.1177/1475921711414236.
  15. Critical aspects of experimental damage detection methodologies using nonlinear vibro-ultrasonics / M. Dunna, A. Carcionea, P. Blanloeuilb, M. Veidta // Procedia Engineering. – 2017. – Vol. 188. – P. 133–140. – doi: 10.1016/j.proeng.2017.04.466.
  16. Бовсуновский А.П., Матвеев В.В. Вибродиагностические параметры усталостной поврежденности упругих тел // Механічна втома металів. Праці 13-го Міжнародного колоквіуму (МВМ-2006), 25–28 вересня 2006 року. – Ternopil, 2006. – P. 212–218.
  17. Цыфанский С.Л., Бересневич В.И., Лушников Б.В. Нелинейная вибродиагностика машин и механизмов. – Рига: ; Рижский техн. ун-т, 2008. – 366 с. – ISBN 978-9984-32-194-3.
  18. Diana G., Bachmid N., Angel F. An on-line crack detection method for turbo generator rotors // Proceedings of International Conference on the Rotordynamics, JSME, September 14–17, 1986, Tokyo. – Tokyo, 1986. – P. 385–390.
  19. Контроль соосности установки отклоняемых поверхностей по результатам вибрационных испытаний / В.А. Бернс, А.П. Бобрышев, В.Л. Присекин, В.Ф. Самуйлов // Вестник Московского авиационного института. – 2008. – Т. 15, № 1. – С. 87–91.
  20. Способ контроля люфтов в механических проводках управления самолетов / В.А. Бернс, А.П. Бобрышев, В.Л. Присекин, А.И. Белоусов, В.Ф. Самуйлов // Полет. – 2007. – № 12. – С. 50–53.
  21. Al-Khazali H.A.H., Askari M.R. Geometrical and graphical representations analysis of Lissajous figures in rotor dynamic system // IOSR Journal of Engineering. – 2012. – Vol. 2 (5). – Р. 971–978.
  22. Опыт контроля дефектов летательных аппаратов по параметрам вибраций / В.А. Бернс, Е.А. Лысенко, А.В. Долгополов, Е.П. Жуков // Известия Самарского научного центра РАН. – 2016. – Т. 18, № 4. – С. 86–96.
  23. Диагностирование трещин в металлических панелях по нелинейным искажениям портретов колебаний / В.А. Бернс, Е.П. Жуков, В.В. Маленкова, Е.А. Лысенко // Обработка металлов (технология, оборудование, инструменты). – 2018. – Т. 20, № 2. – С. 6–17. – doi: 10.17212/1994-6309-2018-20.2-6-17.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».