Влияние механоактивации порошковой смеси на структуру и свойства бороалитированных малоуглеродистых сталей

Обложка

Цитировать

Полный текст

Аннотация

Введение. Бороалитирование является одним из эффективных способов повышения эксплуатационных свойств (коррозионная стойкость, жаро- и износостойкость) низкоуглеродистых сталей. Твердофазные способы химико-термической обработки (ХТО) проводят из насыщающих смесей на основе порошковых материалов. Предварительная механоактивация данных порошков является одним из способов повышения свойств получаемого диффузионного слоя. Цель настоящей работы заключается в установлении влияния предварительной механоактивации порошковой смеси на структуру и свойства бороалитированного слоя на поверхности малоуглеродистых сталей. В работе рассмотрены результаты исследований по предварительной механоактивации насыщающей смеси при ХТО малоуглеродистых сталей (на примере Ст3 и 3Х2В8Ф) на основе порошкообразных карбида бора и алюминия. Показаны результаты проведенных экспериментов по предварительной механоактивации насыщающей смеси, установлена зависимость размеров частиц исходной смеси от продолжительности механоактивации. Получены образцы сталей с диффузионным слоем после ХТО. Установлено, что температура процесса оказывает значительное влияние на толщину полученных слоев. При увеличении температуры с 950 до 1050 °С на Ст3 толщина слоя возрастает с 120 до 150 мкм, на 3Х2В8Ф – с 105 до 140 мкм при времени выдержки 2 и 4 ч соответственно. Исследована микроструктура полученных образцов, показаны диаграммы распределения микротвердости от глубины диффузионных слоев. Установлено распределение Al по глубине полученного бороалитированного слоя. В качестве дополнительных исследований изучена насыщающая способность смеси после однократного применения в процессе ХТО. Результаты и обсуждения. Установлена принципиальная возможность применения механоактивации при ХТО для получения диффузионных слоев с заданными прочностными характеристиками. Увеличение продолжительности и температуры ХТО в механоактивированных смесях приводит к повышению содержания алюминия в слое.

Об авторах

П. А. Гуляшинов

Email: gulpasha@mail.ru
канд. техн. наук, Байкальский институт природопользования СО РАН, ул. Сахьяновой, 6, г. Улан-Удэ, 670047, Россия, gulpasha@mail.ru

У. Л. Мишигдоржийн

Email: undrakh@ipms.bscnet.ru
канд. техн.наук, 1. Институт физического материаловедения СО РАН, ул. Сахьяновой, 6, г. Улан-Удэ, 670047, Россия; 2. Восточно-Сибирский государственный университет технологий и управления, ул. Ключевская, 40в, г. Улан-Удэ, 670013, Россия, undrakh@ipms.bscnet.ru

Н. С. Улаханов

Email: nulahanov@mail.ru
Восточно-Сибирский государственный университет технологий и управления, ул. Ключевская, 40в, г. Улан-Удэ, 670013, Россия, nulahanov@mail.ru

Список литературы

  1. Ворошнин Л.Г., Менделеева О.Л., Сметкин В.А. Теория и технология химико-термической обработки: учебное пособие. – М.: Новое знание, 2010. – 304 с.
  2. Kulka M. Current trends in boriding: Techniques. – Cham, Switzerland: Springer, 2019. – 282 p. – (Engineering materials).
  3. Atul S.C., Adalarasan R., Santhanakumar M. Study on slurry paste boronizing of 410 martensitic stainless steel using taguchi based desirability analysis (TDA) // International Journal of Manufacturing, Materials, and Mechanical Engineering. – 2015. – N 5. – P. 64–77. – doi: 10.4018/IJMMME.2015070104.
  4. Thermocyclic boroaluminizing of low carbon steels in pastes / U. Mishigdorzhiyn, I. Polyansky, I. Sizov, B. Vetter, A. Schlieter, S. Heinze, C. Leyens // Materials Performance and Characterization. – 2017. – Vol. 6, iss. 4. – P. 531–545. – doi: 10.1520/MPC20160082.
  5. Аввакумов Е.Г. Механические методы активации химических процессов / отв. ред. А.С. Колосов; АН СССР, Сибирское отделение, Институт химии твердого тела и переработки минерального сырья. – 2-е изд., перераб. и доп. – Новосибирск: Наука, 1986. – 303 c.
  6. Механокомпозиты – прекурсоры для создания материалов с новыми свойствами / А.И. Анчаров [и др.]; отв. ред. О.И. Ломовский. – Новосибирск: Изд-во СО РАН, 2010. – 432 с.
  7. Фундаментальные основы механической активации, механосинтеза и механохимических технологий / [Болдырев В.В. и др.]; отв. ред. Е.Г. Аввакумов. – Новосибирск: Изд-во СО РАН, 2009. – 342 с.
  8. The effect of mechanical activation of metal powders on their reactivity and the properties of plasma-deposited coatings / V.A. Polyboyarov, A.E. Lapin, Z.A. Korotaeva, A. Cherepanov, O. Solonenko, N.S. Kobotaeva, Е.Е. Sirotkina, M. Korchagin // Physical Mesomechanics. – 2002. – N 5. – P. 89–94.
  9. Shojaie M. Mechanically activated combustion synthesis of B4C-TiB2 nanocomposite powder // Journal of Advanced Materials and Processing. – 2017. – Vol. 5, N 1. – P. 13–21.
  10. Self-propagating high-temperature synthesis in mechanically activated mixtures of boron carbide and titanium / M.A. Korchagin, A.I. Gavrilov, V.E. Zarko, A.B. Kiskin, Yu.V. Iordan, V.I. Trushlyakov // Combustion, Explosios, and Shock Waves. – 2017. – Vol. 53. – P. 669–677. – doi: 10.1134/S0010508217060077.
  11. Gaffet E., Bernard F. Mechanically activated powder metallurgy processing: a versatile way towards nanomaterials synthesis // Annales de Chimie Science des Matériaux. – 2002. – Vol. 27, iss. 6. – P. 47–59. – doi: 10.1016/S0151-9107(02)90014-0.
  12. Torabi O., Ebrahimi-Kahrizsangi R. Effect of the aluminum content on the mechanochemical behavior in ternary system Al-B2O3-C // International Journal of Refractory Metals and Hard Materials. – 2013. – Vol. 36. – P. 90–96. – doi: 10.1016/j.ijrmhm.2012.07.006.
  13. Яковенко Р.В. Влияние механоактивации на структуру и свойства хромистой карбидостали с добавками карбида бора // Современные проблемы физического материаловедения. – Киев, 2015. – Вып. 24. – С. 94–99.
  14. Каченюк М.Н., Сметкин А.А. Эволюция структуры композиционных частиц при механоактивации порошковых смесей на основе титана, карбида кремния и углерода // Современные проблемы науки и образования. – 2014. – № 6.
  15. An evaluation of a borided layer formed on Ti-6Al-4V alloy by means of SMAT and low-temperature boriding / Q. Yao, J. Sun, Y. Fu, W. Tong, H. Zhang // Materials. – 2016. – Vol. 9, N 12. – P. 993. – doi: 10.3390/ma9120993.
  16. Sytentesis of Al-B4C composite coating on low carbon steel by mechanical alloying method / A. Canakci, F. Erdemir, T. Varol, S. Özkaya, R. Dalm?s // Usak University Journal of Material Sciences. – 2014. – Vol. 1. – P. 15–22.
  17. Wear resistance of HVOF sprayed coatings from mechanically activated thermally synthesized Cr3C2–Ni spray powder / H. Sarjas, K. Priit, K. Juhani, M. Viljus, V. Matikainen, P. Vuoristo // Proceedings of the Estonian Academy of Sciences. – 2016. – Vol. 65, N 2. – P. 101–106. – doi: 10.3176/proc.2016.2.10.
  18. Production of thermal spray Cr3C2-Ni powders by mechanically activated synthesis / D. Tkachivskyi, K. Juhani, A. Surzhenkov, P. Kulu, M. Viljus, R. Traksmaa, V. Jankauskas, R. Leišys // Key Engineering Materials. – 2019. – Vol. 799. – P. 31–36. – doi: 10.4028/ href='www.scientific.net/KEM.799.31' target='_blank'>www.scientific.net/KEM.799.31.
  19. Microstructure and wear behavior of tungsten hot-work steel after boriding and boroaluminizing / U. Mishigdorzhiyn, Y. Chen, N. Ulakhanov, H. Liang // Lubricants. – 2020. – Vol. 8, iss. 3. – doi: 10.3390/lubricants8030026.
  20. Mishigdorzhiyn U., Sizov I. The influence of boroaluminizing temperature on microstructure and wear resistance in low-carbon steels // Materials Performance and Characterization. – 2018. – Vol. 7, N 3. – P. 252–265. – doi: 10.1520/MPC20170074.
  21. Jurci P., Hudáková M. Diffusion boronizing of H11 hot work tool steel // Journal of Materials Engineering and Performance. – 2011. – Vol. 20. – P. 1180–1187. – doi: 10.1007/s11665-010-9750-x.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».