Development and Research of a Profile Recorder for Measuring Deviations in the Shape of the Surface of Products by Laser Spiral Scanning

Cover Page

Cite item

Full Text

Abstract

Introduction. The paper deals with the development of a Profile recorder and measurement of deviations in the shape of the surface of products by laser spiral scanning. Analysis of the scientific literature shows that at present, the issues of monitoring and evaluating deviations in the shape of the surface of products require further research, since the use of well-known devices and methods does not always provide the necessary accuracy, manufacturability and sufficient information content of measurements. The research urgency is caused by the fact that existing methods of measuring form deviations of the surfaces does not allow to define a set of parameters with the required accuracy and submit it to two-dimensional and three-dimensional form. Objective: to develop a new method for evaluating a three-dimensional profile by implementing the method of laser spiral scanning and study the Profile recorder to improve the accuracy and productivity of measuring deviations in the shape of the product surface. Methods. The paper proposes a new method for evaluating a three-dimensional surface profile in order to directly determine the shape of the surface of products, to control the quality of the surface of products, regardless of its location. To implement the method, a Profile recorder of an original design is developed and investigated, which provides measurement of two parameters along the Archimedean spiral. Optimization of the design and the method of presenting information for measuring deviations in the shape of the surface of products are performed. Results and discussion. A method of statistical estimation of equations for describing the shape of metal surfaces based on the use of classical laws is proposed. In the case of a flat surface, deviations from flatness are evaluated: undulation, warping, twisting, convexity, concavity, curvature, etc. A Profile recorder is developed to implement the proposed method. The automated mechatronic device and the proposed method are tested on corrugated surfaces. Various equations obtained as a result of statistical processing were compared with each other, and the equation with the highest coefficient of determination is selected. The Profile recorder in Cartesian coordinates is studied in order to obtain reliable and accurate data for estimating shape deviations. The values of the deflection and the size of the corrugation along the height of the C-9 corrugated sheet are determined by laser spiral scanning.

About the authors

S. A. Vasiliev

Email: vsa_21@mail.ru
D.Sc. (Engineering), Associate Professor, I. N. Ulianov Chuvash State University, 15 Moskovsky Prospekt, Cheboksary, 428015, Russian Federation, Vsa_21@mail.ru

V. V. Alekseev

Email: av77@list.ru
D.Sc. (Engineering), Associate Professor, I. N. Ulianov Chuvash State University, 15 Moskovsky Prospekt, Cheboksary, 428015, Russian Federation, av77@list.ru

M. A. Vasiliev

Email: mishawasilev@mail.ru
I. N. Ulianov Chuvash State University, 15 Moskovsky Prospekt, Cheboksary, 428015, Russian Federation, mishawasilev@mail.ru

A. A. Fedorova

Email: e_a_a@mail.ru
I. N. Ulianov Chuvash State University, 15 Moskovsky Prospekt, Cheboksary, 428015, Russian Federation, e_a_a@mail.ru

References

  1. Jeyapoovan T., Murugan M. Surface roughness classification using image processing // Measurement. – 2013. – Vol. 46, iss. 7. – P. 2065–2072. – doi: 10.1016/j.measurement.2013.03.014.
  2. Lushnikov N., Lushnikov P. Methods of assessment of accuracy of road surface roughness measurement with profilometer // Transportation Research Procedia. – 2017. – Vol. 20, pp. 425–429. – doi: 10.1016/j.trpro.2017.01.069.
  3. Non-contact surface roughness measurement of crankshaft journals using a super-continuum laser / V.V. Alexander, H. Deng, M.N. Islam, F.L. Terry // Conference on Lasers and Electro-Optics. – San Jose, 2010. – doi: 10.1364/CLEO_APPS.2010.AFA3.
  4. Babu R.A., Baldev R.A. Study of engineering surfaces using laser-scattering techniques // Sadhana. – 2003. – Vol. 28, pt. 3–4. – P. 739–761. – doi: 10.1007/BF02706457.
  5. Abidin F.Z., Hung J., Zahid1 M.N. Portable non-contact surface roughness measuring device // IOP Conference Series: Materials Science and Engineering. – 2019. – Vol. 469. – P. 012074. – doi: 10.1088/1757-899X/469/1/012074.
  6. Kiran R., Amarendra H.J., Lingappa S. Vision system in quality control automation // MATEC Web of Conferences. – 2018. – Vol. 144. – P. 03008. – doi: 10.1051/matecconf/201814403008.
  7. Shih F.Y. Image processing and pattern recognition: fundamentals and techniques. – Hoboken, NJ: Wiley, 2010. – 537 p. – ISBN: 978-0-470-40461-4.
  8. Lee B.Y., Tarng Y.S. Surface roughness inspection by computer vision in turning operations // International Journal of Machine tools and Manufacture. – 2001. – Vol. 41. – P. 1251–1263. – doi: 10.1016/S0890-6955(01)00023-2.
  9. Spagnoloa G.S., Cozzellaa L., Lecceseb F. Viability of an optoelectronic system for real time roughness // Measurement. – 2014. – Vol. 58. – P. 537–543.
  10. Measurement of surface roughness of metal using binary speckle image analysis / E. Kayahana, H. Oktemb, F. Hacizadeb, H. Nasibovb // Tribology International. – 2010. – Vol. 43. – P. 307–311. – doi: 10.1016/j.triboint.2009.06.010.
  11. Wang T., Groche P. Sheet metal profiles with variable height: numerical analyses on flexible roller beading // Journal of Manufacturing and Materials Processing. – 2019. – Vol. 3 (1). – P. 19. – doi: 10.3390/jmmp3010019.
  12. Stoudt M., Hubbard J.B. Analysis of deformation-induced surface morphologies in steel sheet // Acta Materialia. – 2005. – Vol. 53 (16). – P. 4293–4304. – doi: 10.1016/j.actamat.2005.05.038.
  13. Васильев С.А., Максимов И.И., Алексеев В.В. Методика и устройство для профилирования поверхности почвы и определения направления стока атмосферных осадков в полевых условиях // Вестник АПК Ставрополья. – 2015. – № 3 – С. 22–26.
  14. Васильев С.А., Алексеев В.В., Речнов А.В. Экспресс-метод количественной оценки пожнивных остатков на поверхности почвы // Аграрный научный журнал. – 2015. – № 9. – С. 11–13.
  15. Hockauf R., Grove T., Denkena B. Prediction of ground surfaces by using the actual tool topography // Journal of Manufacturing and Materials Processing. – 2019. – Vol. 3 (2). – P. 40. – doi: 10.3390/jmmp3020040.
  16. Vasiliev S., Kirillov A., Afanasieva I. Method for controlling meliorative technologies on sloping cultivated lands using large scale profilometer // Engineering for Rural Development. Proceedings. – 2018. – Vol. 17. – P. 537–542.
  17. Васильев С.А. Разработка метода и профилографа для оценки мелиоративных технологий на склоновых агроландшафтах // Известия Нижневолжского агроуниверситетского комплекса: наука и высшее профессиональное образование. – 2016. – № 3. – С. 220–226.
  18. Васильев С.А. Обоснование конструктивно-технологических параметров профилографов для контроля мелиоративных технологий на склоновых агроландшафтах // Научный журнал Российского НИИ проблем мелиорации. – 2016. – № 4. – С. 40–54.
  19. Image-based inspection technique of a machined metal surface for an unmanned lapping process / D. Ravimal, H. Kim, D. Koh, J.H. Hong, S.K. Lee // International Journal of Precision Engineering and Manufacturing-Green Technology. – 2019. – doi: 10.1007/s40684-019-00181-7.
  20. Application of laser profilometry to evaluation of the surface of the workpiece machined by abrasive water jet technology / G. Mital, J. Dobránsky, J. Ruzbarský, Š. Olejárová // Applied Sciences. – 2019. – Vol. 9. – P. 21–34. – doi: 10.3390/app9102134.
  21. Liu C.-Y., Tzu-Ping Y. Digital multi-step phase-shifting profilometry for three-dimensional ballscrew surface imaging // Optics and Laser Technology. – 2015. – Vol. 79. – P. 115–123. – doi: 10.1016/j.optlastec.2015.12.001.
  22. Bracun D., Perdan B., Diaci J. Surface defect detection on power transmission belts using laser profilometry // Strojniški vestnik – Journal of Mechanical Engineering. – 2011. – Vol. 57 (3). – P. 257–266. – doi: 10.5545/sv-jme.2010.176.
  23. Campana C., Moslehpour S. Non contact surface roughness measurement instrumentation // American Society for Engineering Education. – 2007. – AC 2007-2557. – P. 12.1107.
  24. Development and verification of a one-step-model for the design of flexible roll formed parts / P. Groche, A. Zettler, S. Berner, G. Schneider // International Journal of Material Forming. – 2010. – Vol. 4 (4). – doi: 10.1007/s12289-010-0998-3.
  25. Schilling R.J. Fundamentals of robotics: analysis and control. – New Delhi: Prentice Hall, 2005. – ISBN 81-203-1047-0.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».