Modeling of sliding wear characteristics of Polytetrafluoroethylene (PTFE) composite reinforced with carbon fiber against SS304

Cover Page

Cite item

Abstract

Introduction. Over the last decade, composite materials based on polytetrafluoroethylene (PTFE) have been increasingly used as alternative materials for automotive applications. PTFE is characterized by a low coefficient of friction, hardness and corrosion resistance. However, this material has a high wear rate. A group of researchers attempted to improve the wear resistance of PTFE material by reinforcing it with different fillers. The purpose of the work: This study experimentally investigates the dry sliding wear characteristics of a PTFE composite reinforced with carbon fiber (35 wt.%) compared to SS304 stainless steel. In addition, experimental mathematical and ANN models are developed to predict the specific wear rate, taking into account the influence of pressure, sliding speed, and interface temperature. The methods of investigation. Dry sliding experiments were performed on a pin-on-disk wear testing machine with varying the normal load on the pin, disk rotation, and interface temperature. Experiments were planned systematically to investigate the effect of input parameters on specific wear rates with a wide range of design space. In total, fifteen experiments were carried out at a 5-kilometer distance without repeating the central run experiment. Sliding velocities were obtained by selecting the track diameter on the disk and corresponding rotation of the disk. A feedforward back-propagation machine learning algorithm was used to the ANN model. Results and Discussion. This study finds better prediction accuracy with the ANN architecture having two hidden layers with 150 neurons on each layer. This study finds an increase in specific wear rates with normal load, sliding velocity, and interface temperature. However, the increase is more prominent at higher process parameters. The normal load followed by sliding velocity most significantly affects the specific wear rate. The results predicted by the developed models for specific wear rates are in good agreement with the experimental values with an average error close to 10%. This shows that the model could be reliably used to obtain the wear rate of PTFE composite reinforced with carbon fiber (35 wt.%) compared to SS304 stainless steel. This study finds scope for further studies considering the effect of varying ANN architectures, different amount of neurons, and hidden layers on the prediction accuracy of the wear rate.

About the authors

S. Chinchanikar

Email: satish.chinchanikar@viit.ac.in
D.Sc. (Engineering), Professor, Vishwakarma Institute of Information Technology, Survey No. 3/4, Kondhwa (Budruk), Pune - 411039, Maharashtra, India, satish.chinchanikar@viit.ac.in

References

  1. Dry sliding wear characteristics of carbon filled polytetrafluoroethylene (PTFE) composite against Aluminium 6061 alloy / A. Sonawane, A. Deshpande, S. Chinchanikar, Y. Munde // Materials Today: Proceedings. – 2021. – Vol. 44. – P. 3888–3893. – doi: 10.1016/j.matpr.2020.12.929.
  2. Chinchanikar S., Barade A., Deshpande A. Sliding wear characteristics of carbon filled polytetrafluoroethylene (PTFE) сomposite against AISI 304 stainless steel counterface // Materials Science Forum. – 2021. – Vol. 1034. – P. 51–60. – doi: 10.4028/ href='www.scientific.net/MSF.1034.51' target='_blank'>www.scientific.net/MSF.1034.51.
  3. Sliding friction and wear behavior of PTFE and its composite under dry sliding conditions / H. Unal, A. Mimarolu, U. Kadioglu, H. Ekiz // Materials and Design. – 2004. – Vol. 25. – P. 239–245. – doi: 10.1016/j.matdes.2003.10.009.
  4. Sahin Y. Analysis of abrasive wear behavior of PTFE composite using Taughi's technique // Cogent Engineering. – 2015. – Vol. 2, N 1. – P. 1–15. – doi: 10.1080/23311916.2014.1000510.
  5. Venkateswarlu G., Sharada R., Rao M.B. Effect of fillers on mechanical properties of PTFE based composites // Archives of Applied Science Research. – 2015. – Vol. 7, N 7. – P. 48–58.
  6. Wang Q., Zhang X., Pei X. Study on the synergistic effect of carbon fiber and graphite and nanoparticle on the friction and wear behavior of polyimide composites // Materials and Design. – 2010. – Vol. 31, N 8. – P. 3761–3768. – doi: 10.1016/j.matdes.2010.03.017.
  7. Song F., Wang Q., Wang T. Effect of glass fiber and MoS2 on tribological behaviour and PV limit of chopped carbon fiber reinforced PTFE composite // Tribology International. – 2016. – Vol. 104. – P. 392–401. – doi: 10.1016/j.triboint.2016.01.015.
  8. Gujrathi S.M., Dhamande L.S., Patare P.M. Wear studies on polytetrafluroethylene (PTFE) composites: Taguchi approach // Bonfring International Journal of Industrial Engineering and Management Science. – 2013. – Vol. 3, N 2. – P. 47–51. – doi: 10.9756/BIJIEMS.4406.
  9. Wear and friction performance of PTFE filled epoxy composites with a high concentration of SiO2 particles / J.T. Shen, M. Top, Y.T. Pei, M. Hosson // Wear. – 2015. – Vol. 322–323, N 15. – P. 171–180. – doi: 10.1016/j.wear.2014.11.015.
  10. Abrasive wear behavior of PTFE for seal applications under abrasive-atmosphere sliding condition / M. Shen, B. Li, Z. Zhang, L. Zhao // Friction. – 2020. – Vol. 8. – P. 755–767. – doi: 10.1007/s40544-019-0301-7.
  11. A study on the friction and wear behavior of PTFE filled with alumina nanoparticles / W.G. Sawyer, K.D. Freudenberg, P. Bhimaraj, L.S. Schadler // Wear. – 2003. – Vol. 254. – P. 573–580. – doi: 10.1016/S0043-1648(03)00252-7.
  12. Kim D.W., Kim K.W. Effects of sliding velocity and normal load on friction and wear characteristics of multi-layered diamond-like carbon (DLC) coating prepared by reactive sputtering // Wear. – 20013. – Vol. 297, N  1–2. – P. 722–730. – doi: 10.1016/j.wear.2012.10.009.
  13. Wang M., Zhang C., Wang X. The wear behavior of textured steel sliding against polymers // Materials. – 2017. – Vol. 10, N 330. – P. 1–14. – doi: 10.3390/ma10040330.
  14. Desale D.D., Pawar H.B. Performance analysis of Polytetrafluoroethylene as journal bearing material // Procedia Manufacturing. – 2018. – Vol. 20. – P. 414–419. – doi: 10.1016/j.promfg.2018.02.060.
  15. Specific wear rate modeling of polytetraflouroethylene composites via artificial neural network (ANN) and adaptive neuro fuzzy inference system (ANFIS) tools / M.A. Ibrahim, Y. Sahin, A. Ibrahim, A.Y. Gidado, M.N. Yahya // Virtual Assistant. – IntechOpen, 2021. – doi: 10.5772/intechopen.95242.
  16. Paturi U.M., Cheruku S., Reddy N.S. The role of artificial neural networks in prediction of mechanical and tribological properties of composites – A comprehensive review // Archives of Computational Methods in Engineering. – 2022. – Vol. 29. – P. 1–41. – doi: 10.1007/s11831-021-09691-7.
  17. Artificial neural network algorithms for 3D printing / M.A. Mahmood, A.I. Visan, C. Ristoscu, I.N. Mihailescu // Materials. – 2020. – Vol. 14, N . – P. 163. – doi: 10.3390/ma14010163.
  18. Naderpour H., Kheyroddin A., Amiri G.G. Prediction of FRP-confined compressive strength of concrete using artificial neural networks // Composite Structures. – 2010. – Vol. 92, N 12. – P. 2817–2829. – doi: 10.1016/j.compstruct.2010.04.008.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».