Влияние степени деформации в условиях низких температур на превращения и свойства метастабильных аустенитных сталей

Обложка

Цитировать

Полный текст

Аннотация

Введение. Для надежной работы низкотемпературного оборудования необходимо применение материалов, способных обеспечить работоспособность в широком температурном интервале в условиях знакопеременных нагрузок, воздействия коррозионных сред и т.п. Чаще всего в таких случаях применяют метастабильные аустенитные стали (МАС) различных систем легирования. К настоящему времени мало данных о поведении таких материалов в условиях низких температур, включая фазово-структурные превращения, особенности таких превращений в разных температурных зонах, в том числе при приложении нагрузки как статической, так и динамической. Предметом исследования в данной работе выбраны МАС марок 10Х14АГ20 и 10Х14Г14Н4Т. Цель работы – оценить работоспособность промышленно применяемых МАС для возможного их применения взамен стали 12Х18Н10Т. Методика исследований. Фазовый состав образцов исследовали на рентгеновском дифрактометре ДРОН-3.0. Механические испытания проводили в интервале температур от +20 до –196 °С. Испытания на статическое одноосное растяжение проводили по ГОСТ 11150–75, испытания на динамический изгиб – по ГОСТ 9454–78. Результаты работы. На основании полученных данных установлено, что повышение скорости деформации при низких температурах способствует снижению количества мартенситных фаз в исследуемых сталях. Выявлено, что способность к упрочнению при упругопластическом деформировании уменьшается и исчезает при температуре перехода материала в хрупкое состояние. Показано, что увеличение скорости низкотемпературной деформации образцов препятствует развитию в сталях фазовых мартенситных превращений. Область применения. Полученные результаты могут быть рекомендованы к применению при выборе материалов для изготовления оборудования, эксплуатируемого при температурах до –196 °С. Выводы. Показано, что полученные значения характеристик механических свойств позволяют рекомендовать исследованные МАС в качестве заменителя стали 12Х18Н10Т вплоть до температуры -196 °С.

Об авторах

С. А. Вологжанина

Email: svet_spb@mail.ru
доктор техн. наук, доцент; Санкт-Петербургский горный университет, Васильевский остров, 21 линия, 2, Санкт-Петербург, 199106, Россия; svet_spb@mail.ru

А. Ф. Иголкин

Email: igolkin47@mail.ru
канд. техн. наук, доцент; Университет ИТМО, Кронверкский пр., 49, Санкт-Петербург, 197101, Россия; igolkin47@mail.ru

А. А. Перегудов

Email: mikki435@gmail.com
ГУП «Петербургский метрополитен», Московский пр., 28, Санкт-Петербург, 190013, Россия; mikki435@gmail.com

И. В. Баранов

Email: ivbaranov@itmo.ru
доктор техн. наук, профессор; Университет ИТМО, Кронверкский пр., 49, Санкт-Петербург, 197101, Россия; ivbaranov@itmo.ru

Н. В. Мартюшев

Email: martjushev@tpu.ru
канд. техн. наук, доцент; Национальный исследовательский Томский политехнический университет, пр. Ленина, 30, г. Томск, 634050, Россия; martjushev@tpu.ru

Список литературы

  1. Трещиностойкость и механические свойства конструкционных материалов технических систем / В.В. Москвичев, Н.А. Махутов, А.П. Черняев, А.А. Букаемский, А.Е. Буров, И.А. Зырянов, А.Г. Козлов, И.И. Кокшаров, Г.Г. Крушенко, А.М. Лепихин, А.С. Мишин, Л.Ф. Москвичева, Е.Н. Федорова, А.Н. Цыплюк; отв. ред. Ю.И. Шокин. – Новосибирск: Наука, 2002. – 334 с.
  2. Peregudov A.А., Vologzhanina S.A., Igolkin A.F. Research of properties of austenitic steels // Key Engineering Materials. – 2021. – Vol. 887. – P. 242–246. – doi: 10.4028/ href='www.scientific.net/KEM.887.242' target='_blank'>www.scientific.net/KEM.887.242.
  3. Солнцев Ю.П., Титова Т.И. Стали для Севера и Сибири. – СПб.: Химиздат, 2002. – 352 с. – ISBN 5-93808-049-5.
  4. Вологжанина С.А., Иголкин А.Ф., Петкова А.П. Исследование влияния низких температур и деформаций на свойства аустенитной стали 12Х18Н10Т // Научно-технические ведомости СПбПУ. Естественные и инженерные науки. – 2019. – Т. 25, № 4. – P. 83–93. – doi: 10.18721/JEST.25407.
  5. Resistance to brittle fracture and availability of austenitic steels / B.S. Ermakov, S.A. Vologzhanina, I.N. Bobrovskij, N.M. Bobrovskij, Y. Erisov // IOP Conference Series: Materials Science and Engineering. – 2018. – Vol. 450, iss. 3. – P. 032041. – doi: 10.1088/1757-899X/450/3/032041.
  6. Разработка перспективных образцов криогенных сталей для газовозов и стационарных танков-хранилищ сжиженного природного газа, предназначенных для использования в условиях Арктики / М.Ю. Матросов, В.Н. Зикеев, П.Г. Мартынов, Е.В. Шульга, В.С. Никитин, В.Н. Половинкин, Ю.А. Симонов, А.А. Семин // Арктика: экология и экономика. – 2016. – № 4 (24). – С. 80–89.
  7. Горынин В.И., Оленин М.И. Пути повышения хладостойкости стали и сварных соединений. – СПб.: Прометей, 2017. – 341 с.
  8. Концепция карбидного конструирования сталей повышенной хладостойкости / В.И. Горынин, С.Ю. Кондратьев, М.И. Оленин, В.В. Рогожкин // Металловедение и термическая обработка металлов. – 2014. – № 10 (712). – С. 32–38.
  9. Горынин В.И., Кондратьев С.Ю., Оленин М.И. Повышение сопротивляемости хрупкому разрушению перлитных и мартенситных сталей при термическом воздействии на морфологию карбидной фазы // Металловедение и термическая обработка металлов. – 2013. – № 10 (700). – С. 22–29.
  10. Рыбин В.В., Малышевский В.А., Хлусова Е.И. Структура и свойства хладостойких сталей для конструкций северного исполнения // Вопросы материаловедения. – 2006. – № 1 (45). – С. 24–44.
  11. Костина М.В., Банных О.А., Блинов В.М. Новый немагнитный Fe–Cr–N высокопрочный коррозионно- и износостойкий сплав. Ч. 1. Влияние хрома и азота на структуру и фазовый состав Fe–Cr–N сплавов // Электрометаллургия. – 2005. – № 12. – С. 26–32.
  12. Production technology for arctic pipeline and marine steel / V.V. Orlov, V.A. Malyshevskii, E.I. Khlusova, S.A. Golosienko // Steel in Translation. – 2014. – Vol. 9, iss. 44. – P. 696–705. – doi: 10.3103/S0967091214090113.
  13. Structure and mechanical properties of high-strength structural steels / O.A. Bannykh, I.O. Bannykh, E.I. Lukin, A.M. Sorokin // Russian Metallurgy (Metally). – 2018. – N 6. – P. 528–532. – doi: 10.1134/S0036029518060046.
  14. Industrial use of austenitic and duplex HNS- manufacture, application and properties / T. Schneiders, R. Ritzenhoff, H. Jung, C. Herrera, A. Bauch // Proceedings of 12th International Conference on High Nitrogen Steels. – Hamburg, 2014. – P. 120–127.
  15. Kostina M.V., Bannykh O.A., Blinov V.M. New nonmagnetic chromium-nitrogen iron-based steel // Proceedings of 7th International Conference “High Nitrogen Steels”, Belgium, Ostende, 19–22 September, 2004. – Belgium, 2004. – P. 395–403.
  16. High strength stainless austenitic Cr-Mn-C-N steels – Part I: Alloy design and properties / H. Berns, V.G. Gavriljuk, S. Riedner, A. Tyshchenko // Steel Research International. – 2007. – Vol. 78, N 9. – P. 714–719.
  17. Высокоазотистые стали / Ц.В. Рашев, А.В. Елисеев, Л.Ц. Жекова, П.В. Богев // Известия вузов. Черная металлургия. – 2019. – Т. 62, № 7. – С. 503–510.
  18. The effect of cold rolling regime on microstructure and mechanical properties of AISI 304L stainless steel / A. Hedayati, A. Najafizadeh, A. Kermanpur, F. Forouzan // Journal of Materials Processing Technology. – 2010. – Vol. 210, iss. 8. – P. 1017–1022. – doi: 10.1016/j.jmatprotec.2010.02.010.
  19. Получение мартенситной стали 10Х3А со сверхравновесной концентрацией азота методом ЭШПД / М.В. Костина, Л.Г. Ригина, В.М. Блинов, С.О. Мурадян // Сборник трудов XV Международного конгресса сталеплавильщиков. – Тула, 2018. – С. 166–172.
  20. Corrosion stability of austenitic steels 05Kh22AG15N8M2F and 12Kh18N10T in chloride-containing media / S.V. Gnedenkov, S.L. Sinebryukhov, V.S. Egorkin, I.E. Vyaliy, I.M. Imshinetskiy, M.V. Kostina, S.O. Muradyan, V.I. Sergienko // Protection of Metals and Physical Chemistry of Surfaces. – 2017. – Vol. 53, N 5. – P. 910–915.
  21. Сравнительный анализ данных при оценке свойств материалов сварных соединений / С.А. Вологжанина, А.П. Петкова, А.Ф. Иголкин, А.А. Перегудов // Научно-технический вестник Поволжья. – 2019. – № 8. – С. 23–27.
  22. Stein G., Hucklenbroich I. Manufacturing and applications of high nitrogen steels // Materials and Manufacturing Processes. – 2004. – Vol. 19, iss. 1. – P. 7–17. – doi: 10.1081/AMP-120027494.
  23. Gavriljuk V.G., Berns H. High nitrogen steels: structure, properties, manufacture, applications. – Berlin; Heidelberg; New York: Springer, 1999. – 378 p. – doi: 10.1007/978-3-662-03760-7. – ISBN 978-3-642-08567-3 (softcover). – ISBN 978-3-540-66411-6 (hardcover). – ISBN 978-3-662-03760-7 (ebook).
  24. Fretting fatigue behaviour of Ni-free high-nitrogen stainless steel in a simulated body fluid / N. Maruyama, S. Hiromoto, E. Akiyama, M. Nakamura // Science and Technology of Advanced Materials. – 2013. – Vol. 14, iss. 2. – Art. 025002. – doi: 10.1088/1468-6996/14/2/025002.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».