Structure and properties of HEA-based coating reinforced with CrB particles
- Authors: Ruktuev A.A.1, Yurgin A.B.1, Shikalov V.S.1, Ukhina A.V.1, Chakin I.K.1, Domarov E.V.1, Dovzhenko G.D.1
-
Affiliations:
- Issue: Vol 25, No 3 (2023)
- Pages: 87-103
- Section: MATERIAL SCIENCE
- URL: https://bakhtiniada.ru/1994-6309/article/view/301452
- DOI: https://doi.org/10.17212/1994-6309-2023-25.3-87-103
- ID: 301452
Cite item
Abstract
About the authors
A. A. Ruktuev
Email: ruktuev@corp.nstu.ru
Ph.D. (Engineering), Novosibirsk State Technical University, 20 Prospekt K. Marksa, Novosibirsk, 630073, Russian Federation, ruktuev@corp.nstu.ru
A. B. Yurgin
Email: yurgin2012@yandex.ru
Novosibirsk State Technical University, 20 Prospekt K. Marksa, Novosibirsk, 630073, Russian Federation, yurgin2012@yandex.ru
V. S. Shikalov
Email: v.shikalov@gmail.com
Khristianovich Institute of Theoretical and Applied Mechanics SB RAS, 4/1 Institutskaya str., Novosibirsk, 630090, Russian Federation, v.shikalov@gmail.com
A. V. Ukhina
Email: auhina181@gmail.com
Ph.D. (Chemical), Institute of solid state chemistry and mechanochemistry SB RAS, 18 Kutateladze str., Novosibirsk, 630090, Russian Federation, auhina181@gmail.com
I. K. Chakin
Email: chak_in2003@bk.ru
Budker Institute of nuclear physics SB RAS, 11 Lavrentyeva str., Novosibirsk, 630090, Russian Federation, chak_in2003@bk.ru
E. V. Domarov
Email: domarov88@mail.ru
Budker Institute of nuclear physics SB RAS, 11 Lavrentyeva str., Novosibirsk, 630090, Russian Federation, domarov88@mail.ru
G. D. Dovzhenko
Email: g.d.dovjenko@srf-skif.ru
Ph.D. (Physics and Mathematics), SRF “SKIF”, 1 Nikolsy Prospekt, Koltsovo, 630559, Russian Federation, g.d.dovjenko@srf-skif.ru
References
- Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes / J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang // Advanced Engineering Materials. ? 2004. ? Vol. 6, iss. 5. ? P. 299–303. ? doi: 10.1002/adem.200300567.
- Microstructural development in equiatomic multicomponent alloys / B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent // Materials Science and Engineering: A. ? 2004. ? Vol. 375–377. ? P. 213–218. ? doi: 10.1016/j.msea.2003.10.257.
- Tsai M.H., Yeh J.W. High-entropy alloys: a critical review // Materials Research Letters. ? 2014. ? Vol. 2, iss. 3. ? P. 107–123. ? doi: 10.1080/21663831.2014.912690.
- George E.P., Raabe D., Ritchie R.O. High-entropy alloys // Nature Reviews Materials. – 2019. – Vol. 4, iss. 8. – P. 515–534. – doi: 10.1038/s41578-019-0121-4.
- Steurer W. Single-phase high-entropy alloys – A critical update // Materials Characterization. ? 2020. ? Vol. 162. ? P. 1–17. ? doi: 10.1016/j.matchar.2020.110179.
- Microstructures and properties of high-entropy alloys / Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu // Progress in Materials Science. ? 2014. ? Vol. 61. ? P. 1–93. ? doi: 10.1016/j.pmatsci.2013.10.001.
- Duchaniya R.K., Pandel U., Rao P. Coatings based on high entropy alloys: An overview // Materials Today: Proceedings. ? 2021. ? Vol. 44. ? P. 4467–4473. ? doi: 10.1016/j.matpr.2020.10.720.
- Li W., Liu P., Liaw P.K. Microstructures and properties of high-entropy alloy films and coatings: a review // Materials Research Letters. ? 2018. ? Vol. 6, iss. 4. ? P. 199–229. ? doi: 10.1080/21663831.2018.1434248.
- Fabrication and wear behavior of TiC reinforced FeCoCrAlCu-based high entropy alloy coatings by laser surface alloying / P.F. Jiang, C.H. Zhang, S. Zhang, J.B. Zhang, J. Chen, Y. Liu // Materials Chemistry and Physics. ? 2020. ? Vol. 255. ? P. 1–10. ? doi: 10.1016/j.matchemphys.2020.123571.
- In-situ TiC reinforced CoCrCuFeNiSi0.2 high-entropy alloy coatings designed for enhanced wear performance by laser cladding / Y. Guo, C. Li, M. Zeng, J. Wang, P. Deng, Y. Wang // Materials Chemistry and Physics. ? 2020. ? Vol. 242. ? P. 1–9. ? doi: 10.1016/j.matchemphys.2019.122522.
- Gu Z., Xi S., Sun C. Microstructure and properties of laser cladding and CoCr2.5FeNi2Tix high-entropy alloy composite coatings // Journal of Alloys and Compounds. ? 2020. ? Vol. 819. ? P. 1–10. ? doi: 10.1016/j.jallcom.2019.152986.
- Formation and mechanical properties of CoNiCuFeCr high-entropy alloys coatings prepared by plasma transferred arc cladding process / J.B. Cheng, X.B. Liang, Z.H. Wang, B.S. Xu // Plasma Chemistry and Plasma Processing. ? 2013. ? Vol. 33, iss. 5. ? P. 979–992. ? doi: 10.1007/s11090-013-9469-1.
- On the study of thermal-sprayed Ni0.2Co0.6Fe0.2CrSi0.2AlTi0.2 HEA overlay coating / W.L. Hsu, H. Murakami, J.W. Yeh, A.C. Yeh, K. Shimoda // Surface and Coatings Technology. ? 2017. ? Vol. 316. ? P. 71–74. ? doi: 10.1016/j.surfcoat.2017.02.073.
- Technological applications of BINP industrial electron accelerators with focused beam extracted into atmosphere / S.N. Fadeev, M.G. Golkovski, A.I. Korchagin, N.K. Kuksanov, A.V. Lavruhin, S.E. Petrov, R.A. Salimov, A.F. Vaisman // Radiation Physics and Chemistry. ? 2000. ? Vol. 57, iss. 3–6. ? P. 653–655. ? doi: 10.1016/s0969-806x(99)00499-5.
- Influence of chromium concentration on corrosion resistance of surface layers of stainless steel / N.F. Uvarov, E. Bushueva, Y. Turlo, G. Khamgushkeeva // MATEC Web of Conferences. ? 2021. ? Vol. 340. ? P. 1–5. ? doi: 10.1051/matecconf/202134001022.
- Raising the resistance of chromium-nickel steel to hydroabrasive wear by non-vacuum electron-beam cladding with boron / E.G. Bushueva, B.E. Grinberg, V.A. Bataev, E.A. Drobyaz // Metal Science and Heat Treatment. ? 2019. ? Vol. 60, iss. 9–10. ? P. 641–644. ? doi: 10.1007/s11041-019-00331-3.
- Structure and properties of titanium surface layers after electron beam alloying with powder mixtures containing carbon / O.G. Lenivtseva, I.A. Bataev, M.G. Golkovskii, A.A. Bataev, V.V. Samoilenko, N.V. Plotnikova // Applied Surface Science. ? 2015. ? Vol. 355. ? P. 320–326. ? doi: 10.1016/j.apsusc.2015.07.043.
- Structure of surface layers produced by non-vacuum electron beam boriding / I.A. Bataev, A.A. Bataev, M.G. Golkovski, D.S. Krivizhenko, A.A. Losinskaya, O.G. Lenivtseva // Applied Surface Science. ? 2013. ? Vol. 284. ? P. 472–481. ? doi: 10.1016/j.apsusc.2013.07.121.
- Non-vacuum electron-beam carburizing and surface hardening of mild steel / I.A. Bataev, M.G. Golkovskii, A.A. Losinskaya, A.A. Bataev, A.I. Popelyukh, T. Hassel, D.D. Golovin // Applied Surface Science. ? 2014. ? Vol. 322. ? P. 6–14. ? doi: 10.1016/j.apsusc.2014.09.137.
- Formation of wear-resistant copper-bearing layers on the surfaces of steel substrates by non-vacuum electron beam acladding using powder mixtures / D.V. Lazurenko, G.I. Alferova, M.G. Golkovsky, K.I. Emurlaev, Y.Y. Emurlaeva, I.A. Bataev, T.S. Ogneva, A.A. Ruktuev, N.V. Stepanova, A.A. Bataev // Surface and Coatings Technology. ? 2020. ? Vol. 395. ? P. 1–14. ? doi: 10.1016/j.surfcoat.2020.125927.
- Cantor B. Multicomponent high-entropy Cantor alloys // Progress in Materials Science. ? 2021. ? Vol. 120. ? P. 1–36. ? doi: 10.1016/j.pmatsci.2020.100754.
- Nanomechanical behavior of CoCrFeMnNi high-entropy alloy / S. Mridha, S. Das, S. Aouadi, S. Mukherjee, R.S. Mishra // JOM Journal of the Minerals Metals and Materials Society. ? 2015. ? Vol. 67, iss. 10. ? P. 2296–2302. ? doi: 10.1007/s11837-015-1566-6.
- Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy / A.J. Zaddach, C. Niu, C.C. Koch, D.L. Irving // JOM Journal of the Minerals Metals and Materials Society. ? 2013. ? Vol. 65, iss. 12. ? P. 1780–1789. ? doi: 10.1007/s11837-013-0771-4.
- The corrosion behavior of ultra-fine grained CoNiFeCrMn high-entropy alloys / Z. Han, W. Ren, J. Yang, A. Tian, Y. Du, G. Liu, R. Wei, G. Zhang, Y. Chen // Journal of Alloys and Compounds. ? 2020. ? Vol. 816. ? P. 1–10. ? doi: 10.1016/j.jallcom.2019.152583.
- Insights into the phase diagram of the CrMnFeCoNi high entropy alloy / M. Laurent-Brocq, A. Akhatova, L. Perrière, S. Chebini, X. Sauvage, E. Leroy, Y. Champion // Acta Materialia. ? 2015. ? Vol. 88. ? P. 355–365. ? doi: 10.1016/j.actamat.2015.01.068.
- Review of alloys developed using the entropy approach / Z. Bataeva, A. Ruktuev, I. Ivanov, A. Yurgin, I. Bataev // Metal Working and Material Science. ? 2021. ? Vol. 23, iss. 2. ? P. 116–146. ? doi: 10.17212/1994-6309-2021-23.2-116-146.
- Zaddach A.J., Scattergood R.O., Koch C.C. Tensile properties of low-stacking fault energy high-entropy alloys // Materials Science and Engineering: A. ? 2015. ? Vol. 636. ? P. 373–378. ? doi: 10.1016/j.msea.2015.03.109.
- Формирование улучшенных механических свойств высокоэнтропийного сплава Cantor / В.Е. Громов, Ю.А. Рубанникова, С.В. Коновалов, К.А. Осинцев , С.В. Воробьев // Известия высших учебных заведений. Черная Металлургия. – 2021. – Т. 64 (8). – С. 599–605. – doi: 10.17073/0368-0797-2021-8-599-605.
- Transformation-enhanced strength and ductility in a FeCoCrNiMn dual phase high-entropy alloy / T. Zhang, R.D. Zhao, F.F. Wu, S.B. Lin, S.S. Jiang, Y.J. Huang, S.H. Chen, J. Eckert // Materials Science and Engineering: A. ? 2020. ? Vol. 780. ? P. 1–7. ? doi: 10.1016/j.msea.2020.139182.
- Microstructure, phase formation and physical properties of AlCoCrFeNiMn high-entropy alloy / S.A. Uporov, R.E. Ryltsev, V.A. Bykov, S.K. Estemirova, D.A. Zamyatin // Journal of Alloys and Compounds. ? 2020. ? Vol. 820. ? P. 1–8. ? doi: 10.1016/j.jallcom.2019.153228.
- Microstructures and mechanical properties of CoCrFeMnNiV high entropy alloy films / S. Fang, C. Wang, C.L. Li, J.H. Luan, Z.B. Jiao, C.T. Liu, C.H. Hsueh // Journal of Alloys and Compounds. ? 2020. ? Vol. 820. ? P. 1–8. ? doi: 10.1016/j.jallcom.2019.153388.
- Fabrication and mechanical properties of TiC reinforced CoCrFeMnNi high-entropy alloy composite by water atomization and spark plasma sintering / D. Yim, P. Sathiyamoorthi, S.J. Hong, H.S. Kim // Journal of Alloys and Compounds. ? 2019. ? Vol. 781. ? P. 389–396. ? doi: 10.1016/j.jallcom.2018.12.119.
- Synergistic strengthening of FeCrNiCo high entropy alloys via micro-TiC and nano-SiC particles / L. Shen, Y. Zhao, Y. Li, H. Wu, H. Zhu, Z. Xie // Materials Today Communications. ? 2021. ? Vol. 26. ? P. 1–7. ? doi: 10.1016/j.mtcomm.2020.101729.
- Microstructural evolution and mechanical characterization of a WC-reinforced CoCrFeNi HEA matrix composite / S.W. Hussain, M.A. Mehmood, M.R.A. Karim, A. Godfrey, K. Yaqoob // Scientific Reports. ? 2022. ? Vol. 12, iss. 1. ? P. 9822. ? doi: 10.1038/s41598-022-13649-5.
- Microstructure and wear properties of TiN–Al2O3–Cr2B multiphase ceramics in-situ reinforced CoCrFeMnNi high-entropy alloy coating / B. Zhang, Y. Yu, S. Zhu, Z. Zhang, X. Tao, Z. Wang, B. Lu // Materials Chemistry and Physics. ? 2022. ? Vol. 276. ? P. 125352. ? doi: 10.1016/j.matchemphys.2021.125352.
- Development and characterization of boride-reinforced CoCrFeNi composites / M.A. Mehmood, M. Mujahid, A. Godfrey, M.F. Zafar, K. Yaqoob // Journal of Alloys and Compounds. ? 2023. ? Vol. 947. ? P. 169535. ? doi: 10.1016/j.jallcom.2023.169535.
- Strengthening CoCrFeNi high-entropy alloy by Laves and boride phases / X. Chen, G. Qin, X. Gao, R. Chen, Q. Song, H. Cui // China Foundry. ? 2022. ? Vol. 19, iss. 6. ? P. 457–463. ? doi: 10.1007/s41230-022-1007-4.
- Structure and oxidation behavior of CoCrFeNiX (where X is Al, Cu, or Mn) coatings obtained by electron beam cladding in air atmosphere / A.A. Ruktuev, D.V. Lazurenko, T.S. Ogneva, R.I. Kuzmin, M.G. Golkovski, I.A. Bataev // Surface and Coatings Technology. ? 2022. ? Vol. 448. ? P. 128921. ? doi: 10.1016/j.surfcoat.2022.128921.
Supplementary files
