Assessment of the quality and mechanical properties of metal layers from low-carbon steel obtained by the WAAM method with the use of additional using additional mechanical and ultrasonic processing

Cover Page

Cite item

Full Text

Abstract

Introduction. Additive manufacturing is a technology that enables three-dimensional (3D) components to be printed layer by layer according to digital models. Completely different from traditional manufacturing methods such as casting, forging, and machining, additive manufacturing is a near net shape manufacturing process that can greatly enhance design freedom and reduce manufacturing runtime. The material processing challenges in Wire and Arc Additive Manufacturing (WAAM) are related to achieving performance metrics related to geometric, physical, and material properties. Tight tolerances and stringent surface integrity requirements cannot be achieved by utilizing stand-alone AM technologies. Therefore, WAAM parts typically require some post-processing to meet requirements related to surface finish, dimensional tolerances and mechanical properties. It is therefore not surprising that the integration of AM with post-processing technologies into single and multi-setup machining solutions, commonly referred to as hybrid AM, has become a very attractive proposition for industry. The purpose of the work is to evaluate the quality and mechanical properties of the resulting metal layers of mild steel by WAAM method using additional mechanical and ultrasonic processing. Research Methods. To conduct the experiments, a set of welding equipment was used — a single-phase inverter device KEMPPI Kempomat 1701, designed for welding with wire in shielding gases. A mixture of argon and carbon dioxide (80 % argon and 20 % CO2) was used as a shielding gas. SV-08G2S (0.8 C-2 Mg-Si) wire was used as the surfacing material. A plate made of steel St3 with overall dimensions 150×100×5 mm was used as a base for surfacing. The surface of the plate before surfacing was thoroughly cleaned from the layer of oxides, oil, rust and other contaminants. For this purpose mechanical cleaning of the surface was used with BOSCH abrasive wheel with a diameter of 125 mm diameter and a grit size of 120. Before surfacing the surface of the product was degreased with white spirit. The gas flow rate was set at 8 dm3/min. To select the optimal wire feed rate and volt-ampere characteristic, surfacing was performed at each adjustment step of wire feed rate, and voltage. Mechanical statistical tensile tests, chemical composition analysis and metallographic studies were also performed. Results and Discussion. Gas porosity is a typical defect that occurs during the WAAM process and should be eliminated because it adversely affects the mechanical properties. Initially, gas porosity leads to a reduction in the mechanical strength of the part due to damage from microcrack formation. In addition, it often causes the surfaced layer to have worse fatigue properties due to the spatial distribution of different shape and size structures. In our experiments we found that a wire feed speed range of 5–6 m/min is optimal. Increasing the flow rate of shielding gas in the range of 8–14 l/min allows reducing porosity in the surfaced metal to almost zero. The mechanical properties of the surfaced beads show that the average value of yield strength after machining is higher than that of unprocessed specimens. The data obtained from these experiments are in good agreement with those reported in the literature. The presented results can be used in real WAAM technological processes.

About the authors

Y. I. Karlina

Email: jul.karlina@gmail.com
ORCID iD: 0000-0001-6519-561X
Ph.D. (Engineering), National Research Moscow State University of Civil Engineering, 26 Yaroslavskoe Shosse, Moscow, 129337, Russian Federation, jul.karlina@gmail.com

V. Yu. Konyukhov

Email: konyukhov_vyu@mail.ru
ORCID iD: 0000-0001-9137-9404
Ph.D. (Engineering), Professor, Irkutsk National Research Technical University, 83 Lermontova str., Irkutsk, 664074, Russian Federation, konyukhov_vyu@mail.ru

T. A. Oparina

Email: martusina2@yandex.ru
ORCID iD: 0000-0002-9062-6554
Irkutsk National Research Technical University, 83 Lermontova str., Irkutsk, 664074, Russian Federation, martusina2@yandex.ru

References

  1. ISO/ASTM 52900. Additive manufacturing – General principles – Fundamentals and vocabulary / F42 Committee. – West Conshohocken, PA, 2021. – URL: https://www.astm.org/Standards/ISOASTM52900.htm (accessed: 2310.2024).
  2. Laser additive manufacturing of metallic components: materials, processes and mechanisms / D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe // International Materials Reviews. – 2012. – Vol. 57 (3). – P. 133–164. – doi: 10.1179/1743280411Y.0000000014.
  3. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges / T.D. Ngo, A. Kashani, G. Imbalzano, K.T. Nguyen, D. Hui // Composites, Part B: Engineering. – 2018. – Vol. 143. – P. 172–196. – doi: 10.1016/j.compositesb.2018.02.012.
  4. Song Y.A., Park S. Experimental investigations into rapid prototyping of composites by novel hybrid deposition process // Journal of Materials Processing Technology. – 2006. – Vol. 171 (1). – P. 35–40. – doi: 10.1016/j.jmatprotec.2005.06.062.
  5. A review of the wire arc additive manufacturing of metals: properties, defects and quality improvement / B. Wu, Z. Pan, D. Ding, D. Cuiuri, H. Li, J. Xu, J. Norrish // Journal of Manufacturing Processes. – 2018. – Vol. 35. – P. 127–139. – doi: 10.1016/j.jmapro.2018.08.001.
  6. Ahn D.G. Directed energy deposition (DED) process: state of the art // International Journal of Precision Engineering and Manufacturing-Green Technology. – 2021. – Vol. 8 (2). – P. 703–742. – doi: 10.1007/s40684-020-00302-7.
  7. Armstrong M., Mehrabi H., Naveed N. An overview of modern metal additive manufacturing technology // Journal of Manufacturing Processes. – 2022. – Vol. 84. – P. 1001–1029. – doi: 10.1016/j.jmapro.2022.10.060.
  8. A review of various materials for additive manufacturing: recent trends and processing issues / M. Srivastava, S. Rathee, V. Patel, A. Kumar, P.G. Koppad // Journal of Materials Research and Technology. – 2022. – Vol. 21. – P. 2612–2641. – doi: 10.1016/j.jmrt.2022.10.015.
  9. Hybrid additive and subtractive machine tools – research and industrial developments / J.M. Flynn, A. Shokrani, S.T. Newman, V. Dhokia // International Journal of Machine Tools and Manufacture. – 2016. – Vol. 101. – P. 79–101. – doi: 10.1016/j.ijmachtools.2015.11.007.
  10. Multi-material additive manufacturing: a systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials / A. Nazir, O. Gokcekaya, K.M. Billah, O. Ertugrul, J. Jiang, J. Sun, S. Hussain // Materials & Design. – 2023. – Vol. 226. – P. 111661. – doi: 10.1016/j.matdes.2023.111661.
  11. New trends in 4D printing: a critical review / S. Vatanparast, A. Boschetto, L. Bottini, P. Gaudenzi // Applied Sciences. – 2023. – Vol. 13 (13). – P. 7744. – doi: 10.3390/app13137744.
  12. Study of the effect of nanomodifiers from silicon production wastes on morphological form of gray cast iron graphites / A.E. Balanovskiy, A.I. Karlina, A.D. Kolosov, Y.I. Karlina // CIS Iron and Steel Review. – 2021. – Vol. 21. – P. 64–69. – doi: 10.17580/cisisr.2021.01.11.
  13. Bead shape control in wire based plasma arc and laser hybrid additive manufacture of Ti-6Al-4V / C. Wang, W. Suder, J. Ding, S. Williams // Journal of Manufacturing Processes. – 2021. – Vol. 68. – P. 1849–1859. – doi: 10.1016/j.jmapro.2021.07.009.
  14. A review of WAAM for steel construction – manufacturing, material and geometric properties, design, and future directions / S.I. Evans, J. Wang, J. Qin, Y. He, P. Shepherd, J. Ding // Structures. – 2022. – Vol. 44. – P. 1506–1522. – doi: 10.1016/j.istruc.2022.08.084.
  15. Kawalkar R., Dubey H.K., Lokhande S.P. Wire arc additive manufacturing: a brief review on advancements in addressing industrial challenges incurred with processing metallic alloys // Materials Today: Proceedings. – 2022. – Vol. 50. – P. 1971–1978. – doi: 10.1016/j.matpr.2021.09.329.
  16. Change in the properties of rail steels during operation and reutilization of rails / K. Yelemessov, D. Baskanbayeva, N.V. Martyushev, V.Y. Skeeba, V.E. Gozbenko, A.I. Karlina // Metals. – 2023. – Vol. 13. – P. 1043. – doi: 10.3390/met13061043.
  17. Recent advances on high?entropy alloys for 3D printing / C. Han, Q. Fang, Y. Shi, S.B. Tor, C.K. Chua, K. Zhou // Advanced Materials. – 2020. – Vol. 32 (26). – P. 1903855. – doi: 10.1002/adma.201903855.
  18. Improving mechanical properties of austenitic stainless steel by the grain refinement in wire and arc additive manufacturing assisted with ultrasonic impact treatment / M. Diao, C. Guo, Q. Sun, F. Jiang, L. Li, J. Li, D. Xu, C. Liu, H. Song // Materials Science and Engineering: A. – 2022. – Vol. 857. – P. 144044. – doi: 10.1016/j.msea.2022.144044.
  19. Material-design-process selection methodology for aircraft structural components: application to additive vs subtractive manufacturing processes / C. Hodonou, M. Balazinski, M. Brochu, C. Mascle // International Journal of Advanced Manufacturing Technology. – 2019. – Vol. 103. – P. 1509–1517. – doi: 10.1007/s00170-019-03613-5.
  20. Process selection charts based on economy and environment: subtractive or additive manufacturing to produce structural components of aircraft / C. Hodonou, O. Kerbrat, M. Balazinski, M. Brochu // International Journal on Interactive Design and Manufacturing. – 2020. – Vol. 14. – P. 861–873. – doi: 10.1007/s12008-020-00663-y.
  21. Mechanical testing and microstructural analysis of wire arc additively manufactured steels / C. Huang, P. Kyvelou, R. Zhang, T.B. Britton, L. Gardner // Materials & Design. – 2022. – Vol. 216. – P. 110544. – doi: 10.1016/j.matdes.2022.110544.
  22. Study of mechanical properties of C-Mn-Si composition metal after wire-arc additive manufacturing (WAAM) / A.E. Balanovskiy, N.A. Astafyeva, V.V. Kondratyev, A.I. Karlina // CIS Iron and Steel Review. – 2021. – Vol. 22. – P. 66–71. – doi: 10.17580/cisisr.2021.02.12.
  23. Investigation of mechanical and fracture properties of wire and arc additively manufactured low carbon steel components / A. Ermakova, A. Mehmanparast, S. Ganguly, N. Razavi, F. Berto // Theoretical and Applied Fracture Mechanics. – 2020. – Vol. 109. – P. 102685. – doi: 10.1016/j.tafmec.2020.102685.
  24. Study of impact strength of C-Mn-Si composition metal after wire-arc additive manufacturing (WAAM) / A.E. Balanovskiy, N.A. Astafyeva, V.V. Kondratyev, Yu.I. Karlina // CIS Iron and Steel Review. – 2022. – Vol. 24. – P. 67–73. – doi: 10.17580/cisisr.2022.02.10.
  25. Porosity reduction in metal with hybrid wire and arc additive manufacturing technology (WAAM) / A.I. Karlina, V.V. Kondratyev, A.E. Balanovskiy, N.A. Astafyeva, E.A. Yamshchikova // CIS Iron and Steel Review. – 2024. – Vol. 27. – P. 91–95. – doi: 10.17580/cisisr.2024.01.14.
  26. Mechanical and microstructural testing of wire and arc additively manufactured sheet material / P. Kyvelou, H. Slack, D.D. Mountanou, M.A. Wadee, T.B. Britton, C. Buchanan, L. Gardner // Materials & Design. – 2020. – Vol. 192. – P. 108675. – doi: 10.1016/j.matdes.2020.108675.
  27. Microstructure and mechanical properties of medium carbon steel deposits obtained via wire and arc additive manufacturing using metal-cored wire / Z. Lin, C. Goulas, W. Ya, M.J.M. Hermans // Metals. – 2019. – Vol. 9 (6). – P. 673. – doi: 10.3390/met9060673.
  28. Review: The metal additive-manufacturing technology of the ultrasonic-assisted wire-and-arc additive-manufacturing process / Y. Cao, Y. Zhang, W. Ming, W. He, J. Ma // Metals. – 2023. – Vol. 13. – P. 398. – doi: 10.3390/met13020398.
  29. Application of ultrasonic vibrations in welding and metal processing: a status review / S. Kumar, C.S. Wu, G.K. Padhy, W. Ding // Journal of Manufacturing Processes. – 2017. – Vol. 26. – P. 295–322. – doi: 10.1016/j.jmapro.2017.02.027.
  30. Investigation of macro and micro structures of compounds of high-strength rails implemented by contact butt welding using burning-off / M.G. Shtayger, A.E. Balanovskiy, S.K. Kargapoltsev, V.E. Gozbenko, A.I. Karlina, Yu.I. Karlina A.S. Govorkov, B.O. Kuznetsov // IOP Conference Series: Materials Science and Engineering. – 2019. – Vol. 560 (1). – P. 012190. – doi: 10.1088/1757-899X/560/1/012190.
  31. Surface hardening of structural steel by cathode spot of welding arc / A.E. Balanovskiy, M.G. Shtayger, A.I. Karlina, S.K. Kargapoltsev, V.E. Gozbenko, Yu.I. Karlina, A.S. Govorkov, B.O. Kuznetsov // IOP Conference Series: Materials Science and Engineering. – 2019. – Vol. 560 (1). – P. 012138. – doi: 10.1088/1757-899X/560/1/012138.
  32. Wire and arc additive manufactured steel: tensile and wear properties / C.V. Haden, G. Zeng, F.M. Carter III, C. Ruhl, B.A. Krick, D.G. Harlow // Additive Manufacturing. – 2017. – Vol. 16. – P. 115–123. – doi: 10.1016/j.addma.2017.05.010.
  33. Analysis of fracture toughness properties of wire + arc additive manufactured high strength low alloy structural steel components / P. Dirisu, S. Ganguly, A. Mehmanparast, F. Martina, S. Williams // Materials Science and Engineering: A. – 2019. – Vol. 765. – P. 138285. – doi: 10.1016/j.msea.2019.138285.
  34. Hybrid processing: the impact of mechanical and surface thermal treatment integration onto the machine parts quality / V.Yu. Skeeba, V.V. Ivancivsky, A.V. Kutyshkin, K.A. Parts // IOP Conference Series: Materials Science and Engineering. – 2016. – Vol. 126 (1). – P. 012016. – doi: 10.1088/1757-899x/126/1/012016.
  35. Research on the possibility of lowering the manufacturing accuracy of cycloid transmission wheels with intermediate rolling elements and a free cage / E.A. Efremenkov, N.V. Martyushev, V.Yu. Skeeba, M.V. Grechneva, A.V. Olisov, A.D. Ens // Applied Sciences. – 2022. – Vol. 12 (1). – P. 5. – doi: 10.3390/app12010005.
  36. Martyushev N.V., Skeeba V.Yu. The method of quantitative automatic metallographic analysis // Journal of Physics: Conference Series. – 2017. – Vol. 803 (1). – P. 012094. – doi: 10.1088/1742-6596/803/1/012094.
  37. Skeeba V.Yu., Ivancivsky V.V. Reliability of quality forecast for hybrid metal-working machinery // IOP Conference Series: Earth and Environmental Science. – 2018. – Vol. 194 (2). – P. 022037. – doi: 10.1088/1755-1315/194/2/022037.
  38. Defining efficient modes range for plasma spraying coatings / E.A. Zverev, V.Yu. Skeeba, P.Yu. Skeeba, I.V. Khlebova // IOP Conference Series: Earth and Environmental Science. – 2017. – Vol. 87 (8). – P. 082061. – doi: 10.1088/1755-1315/87/8/082061.
  39. Скиба В.Ю. Гибридное технологическое оборудование: повышение эффективности ранних стадий проектирования комплексированных металлообрабатывающих станков // Обработка металлов (технология, оборудование, инструменты). – 2019. – Т. 21, № 2. – C. 62–83. – doi: 10.17212/1994-6309-2019-21.2-62-83.
  40. Исследование процесса автоматического управления сменой полярности тока в условиях гибридной технологии электрохимической обработки коррозионностойких сталей / М.А. Борисов, Д.В. Лобанов, А.С. Янюшкин, В.Ю. Скиба // Обработка металлов (технология, оборудование, инструменты). – 2020. – Т. 22, № 1. – С. 6–15. – doi: 10.17212/1994-6309-2020-22.1-6-15.
  41. Influence of welding regimes on structure and properties of steel 12KH18N10T weld metal in different spatial positions / R.A. Mamadaliev, P.V. Bakhmatov, N.V. Martyushev, V.Yu. Skeeba, A.I. Karlina // Metallurgist. – 2022. – Vol. 65 (11–12). – P. 1255–1264. – doi: 10.1007/s11015-022-01271-9.
  42. Plasma-arc surface modification of metals in a liquid medium / A.E. Balanovsky, M.G. Shtayger, V.V. Kondrat'ev, V. Van Huy, A.I. Karlina // IOP Conference Series: Materials Science and Engineering. – 2018. – Vol. 411 (1). – P. 012013. – doi: 10.1088/1757-899X/411/1/012013.
  43. Capability enhancement of production of activating fluxes for arc welding using ultradispersed products of silicon waste processing / N.N. Ivanchik, A.E. Balanovsky, M.G. Shtayger, I.A. Sysoev, A.I. Karlina // IOP Conference Series: Materials Science and Engineering. – 2018. – Vol. 411 (1). – P. 012035. – doi: 10.1088/1757-899X/411/1/012035.
  44. Karlina A.I., Karlina Y.I., Gladkikh V.A. Studying the microstructure, phase composition, and wear resistance of alloyed layers after laser surface melting of low-carbon steel 20 // Metallurgist. – 2024. – Vol. 68. – P. 757–766. – doi: 10.1007/s11015-024-01782-7.
  45. Study of wear of an alloyed layer with chromium carbide particles after plasma melting / A.I. Karlina, Y.I. Karlina, V.V. Kondratiev, R.V. Kononenko, A.D. Breki // Crystals. – 2023. – Vol. 13 (12). – P. 1696. – doi: 10.3390/cryst13121696.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».