Improvement the manufacturing quality of new generation heat-resistant nickel alloy products using wire electrical discharge machining

Cover Page

Cite item

Full Text

Abstract

Introduction. The paper presents the results of an experimental study on the quantitative and qualitative evaluation of the surface after wire electrical discharge machining (WEDM). The purpose of this study is an experimental investigation with qualitative and quantitative analysis of surface defects in samples made of a heat-resistant nickel alloy VV751P after WEDM. Methods of research. Samples for the study with a specific geometry were obtained by the wire electrical discharge machining method in 4 modes. The operating parameters were: workpiece height (h, mm), pulse-on time (Ton, μs), and pulse-off time (Toff, μs). The samples were studied using a Hitachi S-3400N electron microscope in backscattered electron mode at 25 kV. Surface topography after electrical discharge machining was evaluated using a laser scanning microscope (LSM) LextOLS4000. Cyclic tests were performed on a universal testing machine Biss-00-100 at a test frequency of 20 Hz in a symmetrical cycle (R = −1). Results and discussion. The defective (white) layer of samples was analyzed. It is established that during wire electrical discharge machining the thickness of defective white layer is within 10 µm, both after processing in minimum and maximum mode. The surface quality index (surface roughness Ra) was analyzed. It was found that the average value of surface roughness parameter Ra is 1.62 μm when processing samples with a height of 10 mm. When the sample height increases, the surface roughness value reaches 2.6 μm after processing in minimum mode and 3.4 μm after processing in maximum mode. It is established that with an increase in workpiece height, the number of microcracks on the surface of the product increases, which is associated with the intensification of the interaction of single pulses with the processed surface. As a result of the study, it is found that at a loading amplitude of 400 MPa, an average value of the number of cycles reaches 1.50E + 05 cycles. A decrease in the number of cycles is observed with an increase in the amplitude of the loading cycles.

About the authors

E. S. Shlykov

Email: Kruspert@mail.ru
ORCID iD: 0000-0001-8076-0509
Ph.D. (Engineering), Perm National Research Polytechnic University, 29 Komsomolsky prospekt, Perm, 614990, Russian Federation, Kruspert@mail.ru

T. R. Ablyaz

Email: lowrider11-13-11@mail.ru
ORCID iD: 0000-0001-6607-4692
Ph.D. (Engineering), Associate Professor, Perm National Research Polytechnic University, 29 Komsomolsky prospekt, Perm, 614990, Russian Federation, lowrider11-13-11@mail.ru

V. B. Blokhin

Email: warkk98@mail.ru
ORCID iD: 0009-0009-2693-6580
Perm National Research Polytechnic University, 29 Komsomolsky prospekt, Perm, 614990, Russian Federation, warkk98@mail.ru

K. R. Muratov

Email: Karimur_80@mail.ru
ORCID iD: 0000-0001-7612-8025
D.Sc. (Engineering), Associate Professor, Perm National Research Polytechnic University, 29 Komsomolsky prospekt, Perm, 614990, Russian Federation, Karimur_80@mail.ru

References

  1. Influence of the grade of hot work tool steels and its microstructural features on the durability of punches used in the closed die precision forging of valve forgings made of nickel-chrome steel / M. Hawryluk, M. Lachowicz, M. Zwierzchowski, M. Janik, Z. Gronostajski, J. Filipiak // Wear. – 2023. – Vol. 528–529. – doi: 10.1016/j.wear.2023.204963.
  2. Microstructure and abrasive wear behavior of a novel FeCrMoVC laser cladding alloy for high-performance tool steels / J. Zeisig, N. Schädlich, L. Giebeler, J. Sander, J. Eckert, U. Kühn, J. Hufenbach // Wear. – 2017. – Vol. 382–383. – P. 107–112. – doi: 10.1016/j.wear.2017.04.021.
  3. Mechanical properties and corrosion resistance of steel X210CrW12 after semi-solid processing and heat treatment / L. Rogal, J. Dutkiewicz, Z. Szklarz, H. Krawiec, M. Kot, S. Zimowski // Materials Characterization. – 2014. – Vol. 8823. – P. 100–110. – doi: 10.3329/jname.v7i2.5309.
  4. A comparative study on the erosion behavior and mechanism of chrome-coated 25Cr3Mo2WNiV steel and QPQ 25Cr3Mo2WNiV steel / C. Dou, K. Pan, C. Wang, S. Wei, C. Zhang, L. Xu, H. Cui, Y. Liang, J. Huang // Materials Today Communications. – 2024. – Vol. 41. – doi: 10.1016/j.mtcomm.2024.110820.
  5. Abbas M.N., Solomon D.G., Bahari Md. A review on current research trends in electrical discharge machining (EDM) // International Journal of Machine Tools and Manufacture. – 2007. – Vol. 47 (7). – P. 1214–1228. – doi: 10.1016/j.ijmachtools.2006.08.026.
  6. Liao Y.S., Chen S.T., Lin C.S. Development of a high precision tabletop versatile CNC wire-EDM for making intricate micro parts // Journal of Micromechanics and Microengineering. – 2005. – Vol. 15. – P. 245–253. – doi: 10.1088/0960-1317/15/2/001.
  7. Yoo H.K., Kwon W.T., Kang S. Development of a new electrode for micro-electrical discharge machining (EDM) using Ti(C, N)-based cermet // International Journal of Precision Engineering and Manufacturing. – 2014. – Vol. 15 (4). – P. 609–616. – doi: 10.1007/s12541-014-0378-x.
  8. Hoang K.T., Yang S.H. A study on the effect of different vibration-assisted methods in micro-WEDM // Journal of Materials Processing Technology. – 2013. – Vol. 213 (9). – P. 1616–1622. – doi: 10.1016/j.jmatprotec.2013.03.025.
  9. Hoang K.T., Yang S.H. A new approach for micro-WEDM control based on real-time estimation of material removal rate // International Journal of Precision Engineering and Manufacturing. – 2015. – Vol. 16 (2). – P. 241–246. – doi: 10.1007/s12541-015-0032-2.
  10. Debroy A., Chakraborty S. Non-conventional optimization techniques in optimizing non-traditional machining processes: a review // Management Science Letters. – 2013. – Vol. 4 (1). – P. 23–38. – doi: 10.5267/j.msl.2012.10.038.
  11. Swiercz R., Oniszczuk-Swiercz D., Chmielewski T. Multi-response optimization of electrical discharge machining using the desirability function // Micromachines. – 2019. – Vol. 10 (72). – doi: 10.3390/mi10010072.
  12. Swiercz R., Oniszczuk-Swiercz D. The effects of reduced graphene oxide flakes in the dielectric on electrical discharge machining // Nanomaterials. – 2019. – Vol. 9 (3). – doi: 10.3390/nano9030335.
  13. Chalisgaonkar R., Kumar J. Microstructural characteristics of pure titanium by WEDM // International Journal of Microstructure and Materials Properties. – 2014. – Vol. 9 (6). – P. 463–484. – doi: 10.1504/IJMMP.2014.067308.
  14. Study of micro structural material changes after WEDM based on TEM lamella analysis / K. Mouralova, R. Zahradnicek, L. Benes, T. Prokes, R. Hrdy, J. Fries // Metals. – 2020. – Vol. 10 (7). – P. 949. – doi: 10.3390/met10070949.
  15. Determination of residual stress distribution in high strength aluminum alloy after EDM / S. Mehmood, A. Sultan, N.A. Anjum, W. Anwar, Z. Butt // Advances in Science and Technology Research Journal. – 2017. – Vol. 11 (1). – P. 29–35. – doi: 10.12913/22998624/68729.
  16. Ablyaz T.R., Zhurin A.V., Shlykov E.S. Simulation of electrical discharge machining of dissimilar materials // ARPN Journal of Engineering and Applied Sciences. – 2018. – Vol. 13 (6). – P. 2173–2177.
  17. Discharge current effect on machining characteristics and mechanical properties of aluminum alloy 6061 workpiece produced by electric discharging machining process / C.-G. Kuo, C.-Y. Hsu, J.-H. Chen, P.-W. Lee // Advances in Mechanical Engineering. – 2017. – Vol. 9 (11). – P. 1–8. – doi: 10.1177/1687814017730756.
  18. Ghodsiyeh D., Golshan A.J., Shirvanehdeh A. Review on current research trends in wire electrical discharge machining (WEDM) // Indian Journal of Science and Technology. – 2013. – Vol. 6 (2). – P. 154–166. – doi: 10.17485/ijst/2013/v6i2.18.
  19. Experimental investigation of white layer thickness on EDM processed silicon steel using ANFIS approach / T. Muthuramalingam, D. Saravanakumar, L.G. Babu, H.P. Nguen, N.P. Vu // Silicon. – 2020. – Vol. 12. – P. 1905–1911. – doi: 10.1007/s12633-019-00287-2.
  20. The effect of power supply current on recast layer in S45C steel using wire EDM / H. Wijaya, S. Wahyudi, R. Soenoko, P.H. Setyarini, S. Yasid, F. Gapsari // IOP Conference Series Materials Science and Engineering. – 2019. – Vol. 494 (1). – doi: 10.1088/1757-899X/494/1/012102.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».