A boundary-value problem with shift for a hyperbolic equation degenerate in the interior of a region


Cite item

Full Text

Abstract

For a degenerate hyperbolic equation in characteristic region (lune) a boundary-value problem with operators of fractional integro-differentiation is studied. The solution of this equation on the characteristics is related point-to-point to the solution and its derivative on the degeneration line. The uniqueness theorem is proved by the modified Tricomi method with inequality-type constraints on the known functions. Question of the problem solution's existence is reduced to the solvability of a singular integral equation with Cauchy kernel of the normal type.

About the authors

Oleg A Repin

Samara State Economic University

Email: matstat@mail.ru
(Dr. Phys. & Math. Sci.), Head of Dept., Dept. of Mathematical Statistics and Econometrics 141, Sovetskoy Armii st., Samara, 443090, Russian Federation

Svetlana K Kumykova

Kabardino-Balkarian State University

Email: bsk@rect.kbsu.ru
(Cand. Phys. & Math. Sci.), Associate Professor, Dept. of Function Theory 173, Chernyshevskogo st., Nalchik, 360004, Russian Federation

References

  1. С. Г. Самко, А. А. Килбас, О. И. Маричев, Интегралы и производные дробного порядка и некоторые их приложения, Минск: Наука и техника, 1987. 688 с.
  2. А. М. Нахушев, Задачи со смещением для уравнений в частных производных, М.: Наука, 2006. 287 с.
  3. М. М. Смирнов, Вырождающиеся гиперболические уравнения, Минск: Высшая школа, 1977. 158 с.
  4. С. К. Кумыкова, “Краевая задача со смещением для вырождающегося внутри области гиперболического уравнения” // Дифференц. уравнения, 1980. Т. 16, No 1. С. 93-104.
  5. О. А. Репин, С. К. Кумыкова, “Нелокальная задача для уравнения смешанного типа третьего порядка с обобщенными операторами дробного интегро-дифференцирования произвольного порядка” // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2011. No 4(25). С. 25-36. doi: 10.14498/vsgtu1014.
  6. С. К. Кумыкова, Ф. Б. Нахушева, “Об одной краевой задаче для гиперболического уравнения, вырождающегося внутри области” // Дифференц. уравнения, 1978. Т. 14, No 1. С. 50-65.
  7. О. А. Репин, Краевые задачи со смещением для уравнений гиперболического и смешанного типов, Самара: Саратов. гос. ун-т, Самарский филиал, 1992. 164 с.
  8. Н. И. Мусхелишвили, Сингулярные интегральные уравнения, М.: Наука, 1968. 512 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».