On the theory of fourth-rank hemitropic tensors in three-dimensional Euclidean spaces

Cover Page

Cite item

Full Text

Abstract

The paper is devoted to problems concerning the tensors with constant components, hemitropic tensors and pseudotensors that are of interest from the point of view of micropolar continuum mechanics. The properties and coordinate representations of tensors and pseudotensors with constant components are discussed. Based on an unconventional definition of a hemitropic fourth-rank tensor, a coordinate representations in terms of Kronecker deltas and metric tensors are given. A comparison of an arbitrary hemitropic fourth-rank tensor and a tensor with constant components are discussed. The coordinate representations for constitutive tensors and pseudotensors used in mathematical modeling of linear hemitropic micropolar continuums are given in terms of the metric tensor.The covariant constancy of fourth-rank pseudotensors with constant components and hemitropic tensors is considered and discussed.

About the authors

Eugenii V. Murashkin

Ishlinsky Institite for Problems in Mechanics, Russian Academy of Sciences

Email: evmurashkin@gmail.com
ORCID iD: 0000-0002-3267-4742
SPIN-code: 4022-4305
Scopus Author ID: 12760003400
ResearcherId: F-4192-2014
http://www.mathnet.ru/person53045

Cand. Phys. & Math. Sci., PhD, MD; Senior Researcher; Lab. of Modeling in Solid Mechanics

101–1, pr. Vernadskogo, Moscow, 119526, Russian Federation

Yuri N. Radayev

Ishlinsky Institite for Problems in Mechanics, Russian Academy of Sciences

Author for correspondence.
Email: y.radayev@gmail.com
ORCID iD: 0000-0002-0866-2151
SPIN-code: 5886-9203
Scopus Author ID: 6602740688
ResearcherId: J-8505-2019
http://www.mathnet.ru/person39479

D.Sc. (Phys. & Math. Sci.), Ph.D., M.Sc., Professor; Leading Researcher; Lab. of Modeling in Solid Mechanics

Russian Federation, 101–1, pr. Vernadskogo, Moscow, 119526, Russian Federation

References

  1. Truesdell C., Toupin R. The classical field theories, In: Principles of Classical Mechanics and Field Theory, Encyclopedia of Physics, III/1; eds. S. Flügge. Berlin, Göttingen, Heidelberg, Springer, 1960, pp. 226–858. DOI: https://doi.org/10.1007/978-3-642-45943-6_2.
  2. Truesdell C., Noll W. The Non-Linear Field Theories of Mechanics. Berlin, Heidelberg, Springer, 2004, xxix+602 pp. DOI: https://doi.org/10.1007/978-3-662-10388-3.
  3. Maugin G. A. Material Inhomogeneities in Elasticity. New York, CRC Press, 1993, 292 pp. DOI: https://doi.org/10.1201/9781003059882.
  4. Mase G. T., Smelser R. E., Mase G. E. Continuum Mechanics for Engineers. Boca Raton, CRC Press, 2009, 398 pp. DOI: https://doi.org/10.1201/9781420085396.
  5. Haupt P. Continuum Mechanics and Theory of Materials. Berlin, Heidelberg, Springer, 2002, xxviii+643 pp. DOI: https://doi.org/10.1007/978-3-662-04775-0.
  6. Spencer A. J. M. Continuum Mechanics. Mineola, Dover Publ., 2004, viii+183 pp.
  7. Irgens F. Continuum Mechanics. Berlin, Heidelberg, Springer, 2008, xviii+661 pp. DOI: https://doi.org/10.1007/978-3-540-74298-2.
  8. Gurevich G. B. Foundations of the Theory of Algebraic Invariants. Groningen, P. Noordhoff, 1964, viii+429 pp.
  9. Synge J. L., Schild A. Tensor Calculus, Dover Books on Advanced Mathematics. New York, Dover Publ., 1978, xi+324 pp.
  10. Schouten J. A. Tensor Analysis for Physicist. Oxford, Clarendon Press, 1954, xii+277 pp.
  11. McConnell A. J. Application of Tensor Analysis. New York, Dover Publ., 1957, xii+318 pp.
  12. Sokolnikoff I. S. Tensor Analysis. Theory and Applications to Geometry and Mechanics of Continua, Applied Mathematics Series. New York, John Wiley & Sons, 1964, xii+361 pp.
  13. Jeffreys H. Cartesian Tensors. Cambridge, Cambridge Univ. Press, 1931, vii+93 pp.
  14. Jeffreys H., Swirles B. Methods of Mathematical Physics, Cambridge Mathematical Library. Cambridge, Cambridge Univ. Press, 1950, viii+679 pp. DOI: https://doi.org/10.1017/cbo9781139168489.
  15. Smith G. F., Rivlin R. S. The anisotropic tensors, Quart. Appl. Math., 1957, vol. 15, no. 3, pp. 308–314. DOI: https://doi.org/10.1090/qam/101883.
  16. Lurie A. I. Nelineinaia teoriia uprugosti [Nonlinear Theory of Elasticity]. Moscow, Nauka, 1980, 512 pp. (In Rissian)
  17. Radayev Yu. N. The Lagrange multipliers method in covariant formulations of micropolar continuum mechanics theories, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2018, vol. 22, no. 3, pp. 504–517 (In Russian). EDN: YOYJQD. DOI: https://doi.org/10.14498/vsgtu1635.
  18. Radayev Yu. N., Murashkin E. V. Pseudotensor formulation of the mechanics of hemitropic micropolar media, Problems of Strength and Plasticity, 2020, vol. 82, no. 4, pp. 399–412 (In Russian). EDN: TODIFV. DOI: https://doi.org/10.32326/1814-9146-2020-82-4-399-412.
  19. Murashkin E. V., Radayev Yu. N. On a micropolar theory of growing solids, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2020, vol. 24, no. 3, pp. 424–444. EDN: TYGBER. DOI: https://doi.org/10.14498/vsgtu1792.
  20. Kovalev V. A., Murashkin E. V., Radayev Yu. N. On the Neuber theory of micropolar elasticity. A pseudotensor formulation, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2020, vol. 24, no. 4, pp. 752–761. EDN: IVEASC. DOI: https://doi.org/10.14498/vsgtu1799.
  21. Murashkin E. V., Radayev Yu. N. On the constitutive pseudoscalars of hemitropic micropolar media in inverse coordinate frames, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2021, vol. 25, no. 3, pp. 457–474 (In Russian). EDN: XYERLC. DOI: https://doi.org/10.14498/vsgtu1870.
  22. Radayev Yu. N., Murashkin E. V. Generalized pseudotensor formulations of the Stokes’ integral theorem, Izv. Saratov Univ. Math. Mech. Inform., 2022, vol. 22, no. 2, pp. 205–215. EDN: VURXND. DOI: https://doi.org/10.18500/1816-9791-2022-22-2-205-215.
  23. Radayev Yu. N., Murashkin E. V., Nesterov T. K. On covariant non-constancy of distortion and inversed distortion tensors, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2022, vol. 26, no. 1, pp. 36–47. EDN: EWDQGG. DOI: https://doi.org/10.14498/vsgtu1891.
  24. Murashkin E. V., Radayev Yu. N. On a ordering of area tensor elements orientations in a micropolar continuum immersed in an external plane space, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2021, vol. 25, no. 4, pp. 776–786 (In Russian). EDN: ZKIAAJ. DOI: https://doi.org/10.14498/vsgtu1883.
  25. Nowacki W. Theory of Asymmetric Elasticity. Oxford, Pergamon Press, 1986, viii+383 pp.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Authors; Samara State Technical University (Compilation, Design, and Layout)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».