Pesquisa

Edição
Título
Autores
Study of the influence of socio-economic development of northern oil and gas producing regions on emissions of pollutants into the atmosphere
Kutyshkin A., Shulgin O.
Multimodal neural network processing of video lectures using multi-agent systems
Ismagulov M.
Recovery of Hydrochemical Parameters of the Streeter – Phelps – Shishkin Model Using the Nelder – Mead Method
Semenov S., Kurkina M., Finogenov A.
Application of Machine Learning to Recognize Plagioclases in Thin Sections
Kuzina M.
Forecasting changes in the Earth’s climate system by instrumental measurements and paleodata in the phase-time region, consistent with changes in the barycentric motions of the SUN. Part 2
Alekseev V.
Maximizing the number of allowable approximation errors when building a linear regression model
Noskov S., Shakhurov A.
An approach to the assessment of carbon reservesin KHMAO-Yugra using carbon maps
Bredihin A.
Implementation of the method of structural-parametric optimization of graph models of organizational-technical systems
Popov A.
Computer analysis and rapid assessment of data obtained by measuring residual stresses after vibration-hardening of samples
Galimov E., Tyurin A., Gimbitsky A.
Application of genetic algorithms to optimize solution of filtering and prediction problems in dynamic program testing systems
Polukhin P.
Identification of parameters of a combined piece-linear regression model
Noskov S.
Mathematical modeling of conflicts
Antipova E.
On some operating modes of a submersible induction electric motor
Kovalev V., Balyklov E., Husainov E.
Measurement of residual stresses after vibroimpulsive hardening of specimen
Galimov E., Tyurin A.
The Frank-Wulf method in modeling information systems
Semakhin A.
Construction of a piece-linear autoregression model of an arbitrary order
Noskov S.
Forecasting changes in the earth’s climate system by instrumental measurements and paleodata in the phase-time region, consistent with changes in the barycentric motions of the sun. Part 1
Alekseev V.
1 - 17 de 17 resultados
Dicas:
  • Palavras-chave são sensíveis a maiúsculas
  • Preposições e conjunções ingleses são ignoradas
  • Busca é feita por todos os palavras-chave (agente AND experimentador) por omissão
  • Use OR para pesquisar um termo exato, ex.: educação OR formação
  • Use parênteses para criar frases complexas, ex.: arquivo de ((revistas OR conferências) NOT teses)
  • Para pesquisar uma frase precisa use aspas duplas, ex.: "investigações científicas"
  • Exclua uma palavra utilizando o sinal - (hífen) ou operador NOT; ex.: concurso-de beleza ou concurso NOT de beleza
  • Use * como caractere-coringa, ex.: científic* recuperará as palavras "científico", "científicos", etc.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».