Predictive Modeling Methods for Estimating the Residual Strength of Wooden Structures Based on Experimental Data
- Autores: Abrakhin S.I.1, Lukina A.V.2, Lisyatnikov M.S.1, Chibrikin D.A.1
-
Afiliações:
- Vladimir State University named after Alexander and Nikolay Stoletovs
- Moscow State University of Civil Engineering (National Research University)
- Edição: Volume 21, Nº 4 (2025)
- Páginas: 346-357
- Seção: Experimental researches
- URL: https://bakhtiniada.ru/1815-5235/article/view/349862
- DOI: https://doi.org/10.22363/1815-5235-2025-21-4-346-357
- EDN: https://elibrary.ru/CKYDNO
- ID: 349862
Citar
Resumo
Estimating the load-bearing capacity and predicting the residual strength of existing structures is one of the most difficult tasks. Such prediction is usually performed on the basis of experimental destructive testing of samples. A methodology for predicting the residual strength of wooden structures is proposed, based on the results of experimental studies to determine the short-term resistance of pure wood. Wooden rafter systems of residential buildings built in the 1950s and early 1960s in Vladimir were chosen as objects of research. Interpolation and extrapolation methods were used to build a predictive model of the residual life of a structure. Detailed calculations are given, which clearly show the possibility of using these methods. It is determined that the autoregression method (Burg method) shows good predictive results, correlating with experimental data from other studies and theoretical assumptions. Forecasting the remaining life of a structure is a key factor in ensuring the reliability and safety of buildings, as well as reducing future operating costs.
Palavras-chave
Sobre autores
Sergey Abrakhin
Vladimir State University named after Alexander and Nikolay Stoletovs
Email: abrahin_s@vlsu.ru
ORCID ID: 0009-0002-8589-4826
Código SPIN: 2121-2007
Candidate of Technical Sciences, Associate Professor of the Department of Building Structures, Institute of Аrchitecture, Civil Engineering and Energy
87 Gorky St, Vladimir, 600000, Russian FederationAnastasiya Lukina
Moscow State University of Civil Engineering (National Research University)
Autor responsável pela correspondência
Email: pismo.33@yandex.ru
ORCID ID: 0000-0001-6065-678X
Código SPIN: 8745-0004
Candidate of Technical Sciences, Associate Professor of the Department of Architectural and Construction Design and Environmental Physics, Institute of Architecture and Urban Planning
26 Yaroslavskoye highway, Moscow, 129337, Russian FederationMikhail Lisyatnikov
Vladimir State University named after Alexander and Nikolay Stoletovs
Email: mlisyatnikov@mail.ru
ORCID ID: 0000-0002-5262-6609
Código SPIN: 4089-7216
Candidate of Technical Sciences, Associate Professor of the Department of Building Structures, Institute of Аrchitecture, Civil Engineering and Energy
87 Gorky St, Vladimir, 600000, Russian FederationDanila Chibrikin
Vladimir State University named after Alexander and Nikolay Stoletovs
Email: dachibrikin@outlook.com
ORCID ID: 0000-0001-9278-4559
Código SPIN: 1809-6997
Candidate of Technical Sciences, Associate Professor of the Department of Building Structures, Institute of Аrchitecture, Civil Engineering and Energy
87 Gorky St, Vladimir, 600000, Russian FederationBibliografia
- Repin V.A., Lukina A.V., Strekalkin A.A. Parameterization of Maxwell - Cremona diagram for determining forces in elements of a scissors truss. Structural Mechanics of Engineering Constructions and Buildings. 2024;20(2):97-108. http://doi.org/10.22363/1815-5235-2024-20-2-97-108 EDN: KZTKLX
- Gribanov A.S., Roshchina S.I., Popova M.V., Sergeev M.S. Laminar polymer composites for wooden structures. Magazine of Civil Engineering. 2018;7(83):3-11. http://doi.org/10.18720/MCE.83.1 EDN: ZDIKJN
- Jašek M., Stejskalová K., Fojtík R., Ingeli R. Analysis of the service life of wooden bridge structures using structural protection. Case Studies in Construction Materials. 2025;22:e04453. http://doi.org/10.1016/J.CSCM.2025.E04453
- Yadav S., Purchase D. Biodeterioration of cultural heritage monuments: A review of their deterioration mechanisms and conservation. International Biodeterioration & Biodegradation. 2025;201:106066. http://doi.org/10.1016/J.IBIOD.2025. 106066
- Qiao Ze.H., Jiang Sh.F., Tang W.J., Li Ni.L. Dual-indicator prediction model for the safety of Chinese ancient wooden structures subjected to bioerosion. Journal of Building Engineering. 2021;43:102868. http://doi.org/10.1016/J.JOBE.2021.102868 EDN: XLWCSO
- Mackiewicz M., Zimiński K., Pawłowicz J.A., Knyziak P. Evaluation of the historic wooden structure condition based on the results of non-destructive tests. Engineering Failure Analysis. 2024;159:108116. http://doi.org/10.1016/J.ENGFAILANAL.2024.108116 EDN: GQTVZV
- Andersen C.E., Hoxha E., Rasmussen F.N., Sorensen C.G., Birgisdottir H. Temporal considerations in life cycle assessments of wooden buildings: Implications for design incentives. Journal of Cleaner Production. 2024;445:141260. http://doi.org/10.1016/J.JCLEPRO.2024.141260 EDN: DPSBPV
- Califano A., Leijonhufvud G., Bichlmair S., Kilian R., Wessberg M., Sepe R., Lamanna G., Bertolin C. Cumulative climate-induced fatigue damage in wooden painted surfaces: The case of wooden churches in Sweden. Journal of Cultural Heritage. 2024;67:313-325. http://doi.org/10.1016/J.CULHER.2024.03.017 EDN: QRXCCF
- Silva A., de Brito J. Service life of building envelopes: A critical literature review. Journal of Building Engineering. 2021;44:102646. http://doi.org/10.1016/J.JOBE.2021.102646 EDN: GPEQBG
- Shirmohammadi M., Leggate W., Redman A. Effects of moisture ingress and egress on the performance and service life of mass timber products in buildings: a review. Construction and Building Materials. 2021;(290):123176. http://doi.org/10.1016/J.CONBUILDMAT.2021.123176 EDN: JOSSIT
- Wang Q., Wang Z., Feng X., Zhao Y., Li Z. Mechanical properties and probabilistic models of wood and engineered wood products: A review of green construction materials. Case Studies in Construction Materials. 2024:(21): e03796. http://doi.org/10.1016/J.CSCM.2024.E03796 EDN: GGNEVS
- Gomon S., Homon S., Pavluk A., Matviiuk O., Sasiuk Z., Puhach Y., Svyrydiuk O. Hypotheses and prerequisites for modelling the stress-strain state of wooden element normal cross-section using the deformation calculation method. Procedia Structural Integrity. 2024;(59):559-565. http://doi.org/10.1016/J.PROSTR.2024.04.079 EDN: JCSSOQ
- Lisyatnikov M., Lukina A., Lukin M., Roschina S. Experimental study of a wooden girder truss with composite chords. Architecture and Engineering. 2024;9(2):47-56. http://doi.org/10.23968/2500-0055-2024-9-2-47-56 EDN: IFJAHS
- Roshchina S.I., Lukina A.V., Narmania B.E., Lisyatnikov M.S., Lukin M.V. Life cycle study of buildings wooden coverings in the textile industry. Izvestiya Vysshikh Uchebnykh Zavedenii, Seriya Teknologiya Tekstil’noi Promyshlennosti. 2024;(4):201-208. (In Russ.) http://doi.org/10.47367/0021-3497_2024_4_201 EDN: LZQWBR
- Chernykh A.G., Korolkov D.I., Danilov E.V., Kazakevich T.N., Koval P.S. Estimation of the residual resource of wooden structuresby the amount of physical wear. Housing Construction. 2022;(4):66-72. (In Russ.) http://doi.org/10.31659/ 0044-4472-2022-4-66-71 EDN: OFDSHE
- Roschina S.I., Lukina A.V., Sergeev M.S., Vlasov A.V., Gribanov A.S. Restoration of wooden constructions by impregnation of polymer composition on the example of industrial buildings of light and textile industry. Izvestiya Vysshikh Uchebnykh Zavedenii, Seriya Teknologiya Tekstil’noi Promyshlennosti. 2016;(5):76-80. (In Russ.) EDN: XHYJRT
- Lam D.H., Cuong L.N., Van Manh P., Van Minh N. On the conditioning of the Newton formula for Lagrange interpolation. Journal of Mathematical Analysis and Applications. 2022;(1):125473. http://doi.org/10.1016/J.JMAA.2021.125473
- Kalitkin N.N. Numerical methods: textbook. stipend. 2nd ed., revised. St. Petersburg: BHV Petersburg publ.; 2011. (In Russ.)
- Zoteev V.E., Makarov R.Y. Numerical method of determining creep model parameters within the first two stages of creep. Vestnik of Samara University. Aerospace and Mechanical Engineering. 2017;16(2):145-156. (In Russ.) http://doi.org/10.18287/2541-7533-2017-16-2-145-156 EDN: ZAETOH
- Chernykh A., Korolkov D., Nizhegorodtsev D., Kazakevich T., Mamedov S. Estimating the residual operating life of wooden structures in high humidity conditions. Architecture and Engineering. 2020;5(1):10-19. http://doi.org/10.23968/2500-0055-2020-5-1-10-19 EDN: LYBAZC
- Ivanov Yu.M., Slavik Yu.Y. Assessment of long-term bending strength of wood based on the results of short-term tests. Bulletin of Higher Educational Institutions. 1981;(2):66-70. (In Russ.) https://lesnoizhurnal.ru/apxiv/1981/%E2%84%962-1981.pdf
- Belyankin F.P. Long-term resistance of a tree. Moscow, Leningrad : ONTI Publ.; 1934. (In Russ.) Available from: https://djvu.online/file/ElrD5VAqf2tv1 (accessed: 15.02.2025).
- Sindhu T.N., Atangana A., Riaz M.B., Abushal T.A. Bivariate entropy-transformed Weibull distribution for modelling bivariate system-simulated data from a computer series: Mathematical features and applied results. Alexandria Engineering Journal. 2025;117:593-608. http://doi.org/10.1016/j.aej.2024.12.107
- Roshchina S.I. Theoretical studies of reinforced wooden structures taking into account long-term force effects. Industrial and Civil Engineering. 2008;(1):48-49. (In Russ.) EDN: IJBHCR
- Sheshukova N.V. Rheological behavior of wood under permanently acting load. Bulletin of the St. Petersburg Forest Engineering Academy. 2008:(184):180-185. (In Russ.) EDN: MVLVIL
- Hung K.-C., Wu T.-L., Chen Y.-L., Wu J.-H. Assessing the effect of wood acetylation on mechanical properties and extended creep behavior of wood/recycled-polypropylene composites. Construction and Building Materials. 2016;108:139-145. http://doi.org/10.1016/j.conbuildmat.2016.01.039
- Nikitina T.A. Technological lifespan of coniferous retrowood in the elements of wooden structures. dis.. Candidate of Technical Sciences. 2021. (In Russ.) EDN: RQLTBR
Arquivos suplementares


