Методы предсказательного моделирования для оценки остаточной прочности деревянных конструкций на основе экспериментальных данных
- Авторы: Абрахин С.И.1, Лукина А.В.2, Лисятников М.С.1, Чибрикин Д.А.1
-
Учреждения:
- Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых
- Национальный исследовательский Московский государственный строительный университет
- Выпуск: Том 21, № 4 (2025)
- Страницы: 346-357
- Раздел: Экспериментальные исследования
- URL: https://bakhtiniada.ru/1815-5235/article/view/349862
- DOI: https://doi.org/10.22363/1815-5235-2025-21-4-346-357
- EDN: https://elibrary.ru/CKYDNO
- ID: 349862
Цитировать
Аннотация
Оценка несущей способности и прогнозирование остаточной прочности существующих конструкций является одной из самых сложных задач. Такое прогнозирование обычно выполняется на основе экспериментальных разрушающих испытаний образцов. Предложена методология прогнозирования остаточной прочности деревянных конструкций, основанная на результатах экспериментальных исследований по определению кратковременного сопротивления чистой древесины. В качестве объектов исследования были выбраны деревянные стропильные системы жилых домов 1950-х и начала 1960-х гг. постройки в г. Владимире. Для построения предсказательной модели остаточного ресурса конструкции были применены методы интерполяции и экстраполяции. Приведены подробные расчеты, наглядно показывающие возможность применения этих методов. Определено, что метод авторегрессии (метод Берга) показывает хорошие предсказательные результаты, коррелирующийся с экспериментальными данными других исследований и теоретическими предпосылками. Прогнозирование остаточного ресурса конструкции является ключевым фактором в обеспечении надежности и безопасности зданий, а также уменьшении эксплуатационных расходов в будущем.
Ключевые слова
Об авторах
Сергей Иванович Абрахин
Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых
Email: abrahin_s@vlsu.ru
ORCID iD: 0009-0002-8589-4826
SPIN-код: 2121-2007
кандидат технических наук, доцент кафедры строительных конструкций
Российская Федерация, 600000, г. Владимир, ул. Горького, д. 87Анастасия Васильевна Лукина
Национальный исследовательский Московский государственный строительный университет
Автор, ответственный за переписку.
Email: pismo.33@yandex.ru
ORCID iD: 0000-0001-6065-678X
SPIN-код: 8745-0004
кандидат технических наук, доцент кафедры архитектурно-строительного проектирования и физики среды
Российская Федерация, 129337, Центральный федеральный округ, г. Москва, Ярославское шоссе, дМихаил Сергеевич Лисятников
Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых
Email: mlisyatnikov@mail.ru
ORCID iD: 0000-0002-5262-6609
SPIN-код: 4089-7216
кандидат технических наук, доцент кафедры строительных конструкций
Российская Федерация, 600000, г. Владимир, ул. Горького, д. 87Данила Александрович Чибрикин
Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых
Email: dachibrikin@outlook.com
ORCID iD: 0000-0001-9278-4559
SPIN-код: 1809-6997
кандидат технических наук, доцент кафедры строительных конструкций
Российская Федерация, 600000, г. Владимир, ул. Горького, д. 87Список литературы
- Repin V.A., Lukina A.V., Strekalkin A.A. Parameterization of Maxwell - Cremona diagram for determining forces in elements of a scissors truss. Structural Mechanics of Engineering Constructions and Buildings. 2024;20(2):97-108. http://doi.org/10.22363/1815-5235-2024-20-2-97-108 EDN: KZTKLX
- Gribanov A.S., Roshchina S.I., Popova M.V., Sergeev M.S. Laminar polymer composites for wooden structures. Magazine of Civil Engineering. 2018;7(83):3-11. http://doi.org/10.18720/MCE.83.1 EDN: ZDIKJN
- Jašek M., Stejskalová K., Fojtík R., Ingeli R. Analysis of the service life of wooden bridge structures using structural protection. Case Studies in Construction Materials. 2025;22:e04453. http://doi.org/10.1016/J.CSCM.2025.E04453
- Yadav S., Purchase D. Biodeterioration of cultural heritage monuments: A review of their deterioration mechanisms and conservation. International Biodeterioration & Biodegradation. 2025;201:106066. http://doi.org/10.1016/J.IBIOD.2025. 106066
- Qiao Ze.H., Jiang Sh.F., Tang W.J., Li Ni.L. Dual-indicator prediction model for the safety of Chinese ancient wooden structures subjected to bioerosion. Journal of Building Engineering. 2021;43:102868. http://doi.org/10.1016/J.JOBE.2021.102868 EDN: XLWCSO
- Mackiewicz M., Zimiński K., Pawłowicz J.A., Knyziak P. Evaluation of the historic wooden structure condition based on the results of non-destructive tests. Engineering Failure Analysis. 2024;159:108116. http://doi.org/10.1016/J.ENGFAILANAL.2024.108116 EDN: GQTVZV
- Andersen C.E., Hoxha E., Rasmussen F.N., Sorensen C.G., Birgisdottir H. Temporal considerations in life cycle assessments of wooden buildings: Implications for design incentives. Journal of Cleaner Production. 2024;445:141260. http://doi.org/10.1016/J.JCLEPRO.2024.141260 EDN: DPSBPV
- Califano A., Leijonhufvud G., Bichlmair S., Kilian R., Wessberg M., Sepe R., Lamanna G., Bertolin C. Cumulative climate-induced fatigue damage in wooden painted surfaces: The case of wooden churches in Sweden. Journal of Cultural Heritage. 2024;67:313-325. http://doi.org/10.1016/J.CULHER.2024.03.017 EDN: QRXCCF
- Silva A., de Brito J. Service life of building envelopes: A critical literature review. Journal of Building Engineering. 2021;44:102646. http://doi.org/10.1016/J.JOBE.2021.102646 EDN: GPEQBG
- Shirmohammadi M., Leggate W., Redman A. Effects of moisture ingress and egress on the performance and service life of mass timber products in buildings: a review. Construction and Building Materials. 2021;(290):123176. http://doi.org/10.1016/J.CONBUILDMAT.2021.123176 EDN: JOSSIT
- Wang Q., Wang Z., Feng X., Zhao Y., Li Z. Mechanical properties and probabilistic models of wood and engineered wood products: A review of green construction materials. Case Studies in Construction Materials. 2024:(21): e03796. http://doi.org/10.1016/J.CSCM.2024.E03796 EDN: GGNEVS
- Gomon S., Homon S., Pavluk A., Matviiuk O., Sasiuk Z., Puhach Y., Svyrydiuk O. Hypotheses and prerequisites for modelling the stress-strain state of wooden element normal cross-section using the deformation calculation method. Procedia Structural Integrity. 2024;(59):559-565. http://doi.org/10.1016/J.PROSTR.2024.04.079 EDN: JCSSOQ
- Lisyatnikov M., Lukina A., Lukin M., Roschina S. Experimental study of a wooden girder truss with composite chords. Architecture and Engineering. 2024;9(2):47-56. http://doi.org/10.23968/2500-0055-2024-9-2-47-56 EDN: IFJAHS
- Roshchina S.I., Lukina A.V., Narmania B.E., Lisyatnikov M.S., Lukin M.V. Life cycle study of buildings wooden coverings in the textile industry. Izvestiya Vysshikh Uchebnykh Zavedenii, Seriya Teknologiya Tekstil’noi Promyshlennosti. 2024;(4):201-208. (In Russ.) http://doi.org/10.47367/0021-3497_2024_4_201 EDN: LZQWBR
- Chernykh A.G., Korolkov D.I., Danilov E.V., Kazakevich T.N., Koval P.S. Estimation of the residual resource of wooden structuresby the amount of physical wear. Housing Construction. 2022;(4):66-72. (In Russ.) http://doi.org/10.31659/ 0044-4472-2022-4-66-71 EDN: OFDSHE
- Roschina S.I., Lukina A.V., Sergeev M.S., Vlasov A.V., Gribanov A.S. Restoration of wooden constructions by impregnation of polymer composition on the example of industrial buildings of light and textile industry. Izvestiya Vysshikh Uchebnykh Zavedenii, Seriya Teknologiya Tekstil’noi Promyshlennosti. 2016;(5):76-80. (In Russ.) EDN: XHYJRT
- Lam D.H., Cuong L.N., Van Manh P., Van Minh N. On the conditioning of the Newton formula for Lagrange interpolation. Journal of Mathematical Analysis and Applications. 2022;(1):125473. http://doi.org/10.1016/J.JMAA.2021.125473
- Kalitkin N.N. Numerical methods: textbook. stipend. 2nd ed., revised. St. Petersburg: BHV Petersburg publ.; 2011. (In Russ.)
- Zoteev V.E., Makarov R.Y. Numerical method of determining creep model parameters within the first two stages of creep. Vestnik of Samara University. Aerospace and Mechanical Engineering. 2017;16(2):145-156. (In Russ.) http://doi.org/10.18287/2541-7533-2017-16-2-145-156 EDN: ZAETOH
- Chernykh A., Korolkov D., Nizhegorodtsev D., Kazakevich T., Mamedov S. Estimating the residual operating life of wooden structures in high humidity conditions. Architecture and Engineering. 2020;5(1):10-19. http://doi.org/10.23968/2500-0055-2020-5-1-10-19 EDN: LYBAZC
- Ivanov Yu.M., Slavik Yu.Y. Assessment of long-term bending strength of wood based on the results of short-term tests. Bulletin of Higher Educational Institutions. 1981;(2):66-70. (In Russ.) https://lesnoizhurnal.ru/apxiv/1981/%E2%84%962-1981.pdf
- Belyankin F.P. Long-term resistance of a tree. Moscow, Leningrad : ONTI Publ.; 1934. (In Russ.) Available from: https://djvu.online/file/ElrD5VAqf2tv1 (accessed: 15.02.2025).
- Sindhu T.N., Atangana A., Riaz M.B., Abushal T.A. Bivariate entropy-transformed Weibull distribution for modelling bivariate system-simulated data from a computer series: Mathematical features and applied results. Alexandria Engineering Journal. 2025;117:593-608. http://doi.org/10.1016/j.aej.2024.12.107
- Roshchina S.I. Theoretical studies of reinforced wooden structures taking into account long-term force effects. Industrial and Civil Engineering. 2008;(1):48-49. (In Russ.) EDN: IJBHCR
- Sheshukova N.V. Rheological behavior of wood under permanently acting load. Bulletin of the St. Petersburg Forest Engineering Academy. 2008:(184):180-185. (In Russ.) EDN: MVLVIL
- Hung K.-C., Wu T.-L., Chen Y.-L., Wu J.-H. Assessing the effect of wood acetylation on mechanical properties and extended creep behavior of wood/recycled-polypropylene composites. Construction and Building Materials. 2016;108:139-145. http://doi.org/10.1016/j.conbuildmat.2016.01.039
- Nikitina T.A. Technological lifespan of coniferous retrowood in the elements of wooden structures. dis.. Candidate of Technical Sciences. 2021. (In Russ.) EDN: RQLTBR
Дополнительные файлы



