Current possibilities and prospects of alveolar bone defect replacement and covering tissues: Narrative literature review

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Dental implantation is widely used to achieve functional results of dentoalveolar region rehabilitation. Moreover, an increase in the volume of supporting tissues of approximately 43–77% is needed. In addition, current approaches for the augmentation of tissue structures do not always show the expected results. Problems with the growth of new supporting tissues are commonly caused by the reduced activity of inducing factors of local and systemic levels in the human body. A critical deficiency of the support structures significantly affects the result of ridge augmentation interventions. In this regard, a regenerative approach using biomaterials with inducing properties is relevant for modeling early processes of neovascularization and osteohistogenesis in the area of interest and achieves functional outcomes.

To review modern achievements of intraoral reconstruction of supporting tissue defects, including bioengineering for the regeneration of the alveolar ridge and covering structures.

An electronic search of literature sources was performed in PubMed using the keywords mentioned in PubMed and MeSH headings. The formats “review”, “systematic review”, and “clinical trial” were requested. The search depth was 20 years.

Of the 378 articles found, 44 met the inclusion criteria set for this review. The prerequisites for the reconstruction of the alveolar ridge focusing on early vascularization of de novo tissues were outlined, and the advantages and disadvantages of bone and soft tissue grafts using osteosubstituting biomaterials for bone augmentation and integumentary tissues were characterized. The results of research efforts in the framework of the use of mesenchymal stem cells, which play a crucial role in the regeneration of the alveolar bone and gum, were presented. The evolution of tissue engineering structures for intraoral integumentary tissues — from thin layers of epithelial cells to three-dimensional structures, which are the epithelized equivalents of the oral mucosa, was presented.

The rapidly increasing number of studies of the biomaterial properties of various chemisms, growth factors, and stem cells and the active development of tissue engineering currently indicate the prospects of scientific thought for the development of next-generation biomaterials, which can work effectively owing to their tissue regeneration activity and unique architecture.

About the authors

Artem Yu. Ananich

Kuban State Medical University

Email: laptoo@mail.ru
ORCID iD: 0000-0002-5166-2894
SPIN-code: 7324-7491
Russian Federation, Krasnodar

Marina D. Perova

Kuban State Medical University; Stomatological Сenter “Intelligent”

Email: mperova2013@yandex.ru
ORCID iD: 0000-0001-6974-6407
SPIN-code: 5552-7988

MD, Dr. Sci. (Medicine), Associate Professor

Russian Federation, Krasnodar; Krasnodar

Igor A. Sevostyanov

Stomatological Сenter “Intelligent”

Email: drsevostyanovia@gmail.com
ORCID iD: 0000-0002-8472-7279
SPIN-code: 9174-3102

MD, Cand. Sci. (Medicine)

Russian Federation, Krasnodar

Irina V. Gilevich

Kuban State Medical University; Research Institute — Regional Clinical Hospital No. 1 professor’s name S.V. Ochapovsky

Author for correspondence.
Email: giliv@list.ru
ORCID iD: 0000-0002-9766-1811
SPIN-code: 3911-1488

MD, Cand. Sci. (Medicine)

Russian Federation, Krasnodar; Krasnodar

References

  1. Bozo IY. Development and application of gene-activated osteoplastic material for replacement of bone defects [dissertation abstract]. Moscow; 2017. 24 p. (In Russ).
  2. Ivanov SY, Muraev AA, Yamurkova NF. Reconstructive surgery of alveolar bone [Internet]. Moscow: GEOTAR-Media; 2016. 360 p. (In Russ). Available from: https://www.studentlibrary.ru/book/ISBN9785970438138.html
  3. Schmitz JP, Hollinger JO. The critical size defect as an experimental model for cranio-mandibulo-facial non unions. Clin Orthop Relat Res. 1986;205:299–308. doi: 10.1097/00003086-198604000-00036
  4. Dimitriou R, Jones E, McGonagle D, Giannoudis PV. Bone regeneration: current concepts and future directions. BMC Med. 2011;9:66. doi: 10.1186/1741-7015-9-66
  5. Gololobov VG, Dedukh NV, Deev RV. Skeletal tissues and organs. Manual of Histology, 2nd edition. Vol. 1. Saint Petersburg: SpecLit; 2011. (In Russ).
  6. Ueda M, Tohnai I, Nakai H. Tissue engineering research in oral implant surgery. Artif Organs. 2001;25(3):164–171. doi: 10.1046/j.1525-1594.2001.025003164.x
  7. Liu J, Bian Z, Kuijpers-Jagtman AM, Von den Hoff JW. Skin and oral mucosa equivalents: Construction and performance. Orthod Craniofac Res. 2010;13(1):11–20. doi: 10.1111/j.1601-6343.2009.01475.x
  8. Schropp L, Wenzel A, Kostopoulos L, et al. Bone healing and soft tissue contour changes following single-tooth extraction: a clinical and radiographic 12-month prospective study. Int J Periodontics Restorative Dent. 2003;23(4):313–323.
  9. Ashman A. Ridge preservation: important buzzwords in dentistry. Gen Dent. 2000;48(3):304–312.
  10. Fernández-Iglesias A, Fuente R, Gil-Peña H, et al. The formation of the epiphyseal bone plate occurs via combined endochondral and intramembranous-like ossification. Int J Mol Sci. 2021;22(2):900. doi: 10.3390/ijms22020900
  11. Kerschnitzki M., Wagermaier W., Roschger P., et al. The organization of the osteocyte network mirrors the extracellular matrix orientation in bone. J Struct Biol. 2011;173(2):303–311. doi: 10.1016/j.jsb.2010.11.014
  12. Li X, Yang S, Jing D, et al. Type II collagen-positive progenitors are major stem cells to control skelet on development and vascular formation. bioRxiv. 2020. doi: 10.1101/2020.09.06.284588
  13. Yu YY, Lieu S, Hu D, et al. Site Specific effects of zoledronic acid during tibial and mandibular fracture repair. PLoS One. 2012;7(2):e31771. doi: 10.1371/journal.pone.0031771
  14. Forriol F, Denaro L, Longo UG, et al. Bone lengthening osteogenesis, a combination of intramembranous and endochondral ossification: an experimental study in sheep. Strategies Trauma Limb Reconstr. 2010;5(2):71–78. doi: 10.1007/s11751-010-0083-y
  15. Runyan CM, Gabrick KS. Biology of bone formation, fracture healing, and distraction osteogenesis. J Craniofac Surg. 2017;28(5):1380–1389. doi: 10.1097/SCS.0000000000003625
  16. Florencio-Silva R, Sasso GR, Sasso-Cerri E, et al. Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed Res Int. 2015;2015:421746. doi: 10.1155/2015/421746
  17. Rho JY, Kuhn-Spearing L, Zioupos P. Mechanical properties and the hierarchical structure of bone. Med Eng Phys. 1998;20(2):92–102. doi: 10.1016/s1350-4533(98)00007-1
  18. Lees S, Prostak K. The locus of mineral crystallites in bone. Connect Tissue Res. 1988;18(1):41–54. doi: 10.3109/03008208809019071
  19. Boskey AL. Bone composition: relationship to bone fragility and antiosteoporotic drug effects. Bonekey Rep. 2015;4:710. doi: 10.1038/bonekey.2015.79
  20. Clarke B. Normal bone anatomy and physiology. Clin J Am Soc Nephrol. 2008;3 Suppl. 3:S131–S139. doi: 10.2215/CJN.04151206
  21. Morgan EF, Unnikrisnan GU, Hussein AI. Bone mechanical properties in healthy and diseased states. Annu Rev Biomed Eng. 2018;20:119–143. doi: 10.1146/annurev-bioeng-062117-12113
  22. García-Gareta E, Coathup MJ, Blunn GW. Osteoinduction of bone grafting materials for bone repair and regeneration. Bone. 2015;81:112–121. doi: 10.1016/j.bone.2015.07.007
  23. Pereira HF, Cengiz IF, Silva FS, et al. Scaffolds and coatings for bone regeneration. J Mater Sci Mater Med. 2020;31(3):27. doi: 10.1007/s10856-020-06364-y
  24. Ehrler DM, Vaccaro AR. The use of allograft bone in lumbar spine surgery. Clin Orthop Relat Res. 2000;(371):38–45. doi: 10.1097/00003086-200002000-00005
  25. Piattelli M, Favero GA, Scarano A, et al. Bone reactions to anorganic bovine bone (Bio-Oss) used in sinus augmentation procedures: a histologic long-term report of 20 cases in humans. Int J Oral Maxillofac Implants. 1999;14(6):835–840.
  26. Oryan A, Alidadi S, Moshiri A, Maffulli N. Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res. 2014;9(1):18. doi: 10.1186/1749-799X-9-18
  27. El-Ghannam A. Bonereconstruction: from bioceramics to tissue engineering. Expert Rev Med Devices. 2005;2(1):87–101. doi: 10.1586/17434440.2.1.87
  28. Hudecki A, Kiryczyński G, Łos MJ. Stem cells and biomaterials for regenerative medicine. AcademicPress; Cambridge, MA, USA: 2018. Biomaterials, Definition, Overview. doi: 10.1016/B978-0-12-812258-7.00007-1
  29. Kokubo T, Kim HM, Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials. 2003;24(13):2161–2175. doi: 10.1016/s0142-9612(03)00044-9
  30. Gao C, Peng S, Feng P, Shuai C. Bone biomaterials and interactions with stem cells. Bone Res. 2017;5:17059. doi: 10.1038/boneres.2017.59
  31. Barrère F, van Blitterswijk CA, de Groot K. Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics. Int J Nanomedicine. 2006;1(3):317–332.
  32. Shuai CJ, Li PJ, Liu JL, Peng SP. Optimization of TCP/HAP ratio for better properties of calcium phosphate scaffold via selective laser sintering. Mater Charact. 2013;77:23–31. doi: 10.1016/j.matchar.2012.12.009
  33. Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanism satthe interface of ceramic prosthetic materials. J Biomed Mater Res. 1971;5:117–141. doi: 10.1002/jbm.820050611
  34. Zhang J, Guan J, Zhang C, et al. Bioactive borate glass promotes the repair of radius segmental bone defects by enhancing the osteogenic differentiation of BMSCs. Biomed Mater. 2015;10(6):065011. doi: 10.1088/1748-6041/10/6/065011
  35. Perova MD. Outcomes of surgical treatment of periodontitis with the use of osteo-replacement implant materials. Novoe v stomatologii. 1999;(2):36–43. EDN: VVRBDL
  36. Tsukasaki M, Takayanagi H. Osteoimmunology: evolving concepts in bone-immune interactions in health and disease. Nat Rev Immunol. 2019;19(10):626–642. doi: 10.1038/s41577-019-0178-8
  37. Saran U, Gemini Piperni S, Chatterjee S. Role of angiogenesis in bone repair. Arch Biochem Biophys. 2014;561:109–117. doi: 10.1016/j.abb.2014.07.006
  38. Li D, Deng L, Xie X, et al. Evaluation of the osteogenesis and angiogenesis effects of erythropoietin and the efficacy of deproteinized bovine bone/recombinant human erythropoietin scaffold on bone defect repair. J Mater Sci Mater Med. 2016;27(6):101. doi: 10.1007/s10856-016-5714-5
  39. Diomede F, Marconi GD, Fonticoli L, et al. Functional relationship between osteogenesis and angiogenesis in tissue regeneration. Int J Mol Sci. 2020;21(9):3242. doi: 10.3390/ijms21093242
  40. Woo EJ. Adverse events reported after the use of recombinant human bone morphogenetic protein 2. J Oral Maxillofac Surg. 2012;70(4):765–767. doi: 10.1016/j.joms.2011.09.008
  41. Gothard D, Smith EL, Kanczler JM, et al. Tissue engineered bone using select growth factors: a comprehensive review of animal studies and clinical translation studies in man. Eur Cell Mater. 2014;28:166–208. doi: 10.22203/ecm.v028a13
  42. Kim S, Lee S, Kim K. Bone tissue engineering strategies in co-delivery of bone morphogenetic protein-2 and biochemical signaling factors. Adv Exp Med Biol. 2018;1078:233–244. doi: 10.1007/978-981-13-0950-2_12
  43. De Witte TM, Fratila-Apachitei LE, Zadpoor AA, Peppas NA. Bone tissue engineering via growth factor delivery: from scaffolds to complex matrices. Regen Biomater. 2018;5(4):197–211. doi: 10.1093/rb/rby013
  44. Shah P, Keppler L, Rutkowski J. Bone morphogenic protein: an elixir for bone grafting — a review. J Oral Implantol. 2012;38(6):767–778. doi: 10.1563/AAID-JOI-D-10-00196
  45. Chen G, Deng C, Li YP. TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci. 2012;8(2):272–288. doi: 10.7150/ijbs.2929
  46. Ho-Shui-Ling A, Bolander J, Rustom LE, et al. Bone regeneration strategies: engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials. 2018;180:143–162. doi: 10.1016/j.biomaterials.2018.07.017
  47. Zhang R, Li X, Liu Y, et al. Acceleration of bone regeneration in critical-size defect using BMP-9-loaded nHA/ColI/MWCNTs scaffolds seeded with bone marrow mesenchymal stem cells. Biomed Res Int. 2019;2019:7343957. doi: 10.1155/2019/7343957
  48. Madame Curie Biosci Database [Internet]. Duffy AM, Bouchier-Hayes DJ, Harmey JH. Vascular endothelial growth factor (VEGF) and its role in non-endothelial cells: autocrine signalling by VEGF. Available online: https://www.ncbi.nlm.nih.gov/books/NBK6482/
  49. Tatullo M, Marrelli B, Palmieri F, et al. Promising scaffold-free approaches in translational dentistry. Int J Environ Res Public Health. 2020;17(9):3001. doi: 10.3390/ijerph17093001
  50. Hu K, Olsen BR. The roles of vascular endothelial growth factor in bone repair and regeneration. Bone. 2016;91:30–38. doi: 10.1016/j.bone.2016.06.013
  51. Matsumoto K, Ema M. Roles of VEGF-A signalling in development, regeneration, and tumours. J Biochem. 2014;156(1):1–10. doi: 10.1093/jb/mvu031
  52. Uccelli A, Wolff T, Valente P, et al. Vascular endothelial growth factor biology for regenerative angiogenesis. Swiss Med Wkly. 2019;149:w20011. doi: 10.4414/smw.2019.20011
  53. Grosso A, Burger MG, Lunger A, et al. It takes two to tango: coupling of angiogenesis and osteogenesis for bone regeneration. Front Bioeng Biotechnol. 2017;5:68. doi: 10.3389/fbioe.2017.00068
  54. Atluri K, Lee J, Seabold D, et al. Gene-activated titanium surfaces promote in vitro osteogenesis. Int J Oral Maxillofac Implants. 2017;32(2):e83–e96. doi: 10.11607/jomi.5026
  55. Bozo IY, Rozhkov SI, Komlev VS, et al. Biological activity comparative evaluation of the gene-activated bone substitutes made of octacalcium phosphate and plasmid DNA carrying VEGF and SDF genes: part 2 — in vivo. Genes & cells. 2017;12(4):39–46. EDN: YYOQKD doi: 10.23868/201707028
  56. Saberianpour S, Heidarzadeh M, Geranmayeh MH, et al. Tissue engineering strategies for the induction of angiogenesis using biomaterials. J Biol Eng. 2018;12:36. doi: 10.1186/s13036-018-0133-4
  57. Diomede F, D’Aurora M, Gugliandolo A, et al. Biofunctionalized scaffold in bone tissue repair. Int J Mol Sci. 2018;19(4):1022. doi: 10.3390/ijms19041022
  58. Karpyuk VB, Perova MD, Kozlov AV, et al. Experimental model of bone reconstruction by osteogenous transformation of autografted freshly-isolated stromal cells from adipose tissue. Annals of Plastic and Reconstructive Surgery. 2007;(4):14–18. EDN: KZQUHL
  59. Deev RV, Isaev AA, Kochish AYu, Tihilov RM. Cellular technologies in traumatology and orthopedics: ways of development. Kletochnaja transplantologija i tkanevaja inzhenerija. 2007;2(4):18–30. EDN: IBYKDN
  60. Perez JR, Kouroupis D, Li DJ, et al. Tissue engineering and cell-based therapies for fractures and bone defects. Front Bioeng Biotechnol. 2018;6:105. doi: 10.3389/fbioe.2018.00105
  61. Langhans MT, Yu S, Tuan RS. Stem cells in skeletal tissue engineering: technologies and models. Curr Stem Cell Res Ther. 2016;11(6):453–474. doi: 10.2174/1574888x10666151001115248
  62. Kinoshita Y, Maeda H. Recent developments of functional scaffolds for craniomaxillofacial bone tissue engineering applications. ScientificWorldJournal. 2013;2013:863157. doi: 10.1155/2013/863157
  63. Traktuev DO, Parfenova EV, Tkachuk VA, March KL. Adipose stromal cells — plastic type of cells with high therapeutic potential. Tsitologiya. 2006;48(2):83–94. EDN: IJNWUH
  64. Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13(12):4279–4295. doi: 10.1091/mbc.e02-02-0105
  65. Katz AJ, Tholpady A, Tholpady SS, et al. Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells. Stem Cells. 2005;23(3):412–423. doi: 10.1634/stemcells.2004-0021
  66. Nakagami H, Morishita R, Maeda K, et al. Adipose tissue-derived stromal cells as a novel option for regenerative cell therapy. J Atheroscler Thromb. 2006;13(2):77–81. doi: 10.5551/jat.13.77
  67. Dufrane D. Impact of age on human adipose stem cells for bone tissue engineering. Cell Transplant. 2017;26(9):1496–1504. doi: 10.1177/0963689717721203
  68. Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211–228. doi: 10.1089/107632701300062859
  69. Jurgens WJ, Oedayrajsingh-Varma MJ, Helder MN, et al. Effect of tissue-harvesting site on yield of stem cells derived from adipose tissue: implications for cell-based therapies. Cell Tissue Res. 2008;332(3):415–426. doi: 10.1007/s00441-007-0555-7
  70. Alexander RW. Understanding adipose-derived stromal vascular fraction cell biology and use on the basis of cellular, chemical, structural and paracrine components: a concise review. J Prolother. 2012;4(1):e855–e869.
  71. Mizuno H, Tobita M, Uysal AC. Concise review: adipose-derived stem cells as a novel tool for future regenerative medicine. Stem Cells. 2012;30(5):804–810. doi: 10.1002/stem.1076
  72. Hirose Y, Funahashi Y, Matsukawa Y, et al. Comparison of trophic factors secreted from human adipose-derived stromal vascular fraction with those from adipose-derived stromal/stem cells in the same individuals. Cytotherapy. 2018;20(4):589–591. doi: 10.1016/j.jcyt.2018.02.001
  73. Perova MD, Kozlov VA, Melnik EA, Karpyuk VB. New possibilities of replacement of large jaw defects in the treatment of odontogenic cysts with the help of vascular-cell fraction of adipose tissue. Institut stomatologii. 2011;(1):107–109. (In Russ).
  74. Perova MD, Karpyuk VB, Sevostyanov IA, Gilevich IV. Treatment outcomes of the alveolar ridge regressive transformation using autologous adipose-tissue derived stromal vascular fraction. Kuban Scientific Medical Bulletin. 2019;269(2):71–84. EDN: RHORGR doi: 10.25207/1608-6228-2019-26-2-71-84
  75. Sándor GK, Numminen J, Wolff J, et al. Adipose stem cells used to reconstruct 13 cases with cranio-maxillofacial hard-tissue defects. Stem Cells Transl Med. 2014;3(4):530–540. doi: 10.5966/sctm.2013-0173
  76. Manimaran K, Sharma R, Sankaranarayanan S, Perumal SM. Regeneration of mandibular ameloblastoma defect with the help of autologous dental pulp stem cells and buccal pad of fat stromal vascular fraction. Ann Maxillofac Surg. 2016;6(1):97–100. doi: 10.4103/2231-0746.186128
  77. Pellacchia V, Renzi G, Becelli R, Socciarelli F. Bone regeneration of the maxillofacial region through the use of mesenchymal cells obtained by a filtration process of the adipose tissue. J Craniofac Surg. 2016;27(3):558–560. doi: 10.1097/SCS.0000000000002447
  78. Prins HJ, Schulten EA, Ten Bruggenkate CM, et al. Bone regeneration using the freshly isolated autologous stromal vascular fraction of adipose tissue in combination with calcium phosphate ceramics. Stem Cells Transl Med. 2016;5(10):1362–1374. doi: 10.5966/sctm.2015-0369
  79. Feinberg SE, Aghaloo TL, Cunningham LL Jr. Role of tissue engineering in oral and maxillofacial reconstruction: findings of the 2005 AAOMS Research Summit. J Oral Maxillofac Surg. 2005;63(10):1418–1425. doi: 10.1016/j.joms.2005.07.004
  80. Kasai Y, Takagi R, Kobayashi S, et al. A stable protocol for the fabrication of transplantable human oral mucosal epithelial cell sheets for clinical application. Regen Ther. 2020;14:87–94. doi: 10.1016/j.reth.2019.11.007
  81. Bannasch H, Unterberg T, Föhn M, et ak. Cultured keratinocytes in fibrin with decellularised dermis close porcine full-thickness wounds in a single step. Burns. 2008;34(7):1015–1021. doi: 10.1016/j.burns.2007.12.009
  82. Meran S, Thomas DW, Stephens P, et al. Hyaluronan facilitates transforming growth factor-beta1-mediated fibroblast proliferation. J Biol Chem. 2008;283(10):6530–6545. doi: 10.1074/jbc.M704819200
  83. Terada M, Izumi K, Ohnuki H, et al. Construction and characterization of a tissue-engineered oral mucosa equivalent based on a chitosan-fish scale collagen composite. J Biomed Mater Res B Appl Biomater. 2012;100(7):1792–1802. doi: 10.1002/jbm.b.32746
  84. Sultankulov B, Berillo D, Sultankulova K, et al. Progress in the development of chitosan-based biomaterials for tissue engineering and regenerative medicine. Biomolecules. 2019;9(9):470. doi: 10.3390/biom9090470
  85. Bustos RH, Suesca E, Millán D, et al. Real-time quantification of proteins secreted by artificial connective tissue made from uni- or multidirectional collagen I scaffolds and oral mucosa fibroblasts. Anal Chem. 2014;86(5):2421–2428. doi: 10.1021/ac4033164
  86. Jansen RG, van Kuppevelt TH, Daamen WF, et al. Tissue reactions to collagen scaffolds in the oral mucosa and skin of rats: environmental and mechanical factors. Arch Oral Biol. 2008;53(4):376–387. doi: 10.1016/j.archoralbio.2007.11.003
  87. Rouabhia M, Allaire P. Gingival mucosa regeneration in athymic mice using in vitro engineered human oral mucosa. Biomaterials. 2010;31(22):5798–5804. doi: 10.1016/j.biomaterials.2010.04.004
  88. Izumi K, Terashi H, Marchelo CL, Feinberg SE. Development and characterization of a tissue-engineered human oral mucosa equivalent produced in a serum-free culture system. J Dent Res. 2000;79(3):798–805. doi: 10.1177/00220345000790030301
  89. Xiong X, Zhao Y, Zhang W, et al. In vitro engineering of a palatal mucosa equivalent with acellular porcine dermal matrix. J Biomed Mater Res A. 2008;86(2):544–551. doi: 10.1002/jbm.a.31689
  90. Barker TS, Cueva MA, Rivera-Hidalgo F, et al. A comparative study of root coverage using two different acellular dermal matrix products. J Periodontol. 2010;81(11):1596–1603. doi: 10.1902/jop.2010.090291
  91. Gallagher SI, Matthews DC. Acellular dermal matrix and subepithelial connective tissue grafts for root coverage: a systematic review. J Indian Soc Periodontol. 2017;21(6):439–448. doi: 10.4103/jisp.jisp_222_17
  92. Dongari-Bagtzoglou A, Kashleva H. Development of a highly reproducible three-dimensional organotypic model of the oral mucosa. Nat Protoc. 2006;1(4):2012–2018. doi: 10.1038/nprot.2006.323
  93. Moharamzadeh K, Colley H, Murdoch C, et al. Tissue-engineered oral mucosa. J Dent Res. 2012;91(7):642–650. doi: 10.1177/0022034511435702
  94. Stevens MM, George JH. Exploring and engineering the cell surface interface. Science. 2005;310(5751):1135–1138. doi: 10.1126/science.1106587
  95. Matsusaki M, Sakaue K, Kadowaki K, Akashi M. Three-dimensional human tissue chips fabricated by rapid and automatic inkjet cell printing. Adv Healthc Mater. 2013;2(4):534–539. doi: 10.1002/adhm.201200299
  96. Gao G, Cui X. Three-dimensional bioprinting in tissue engineering and regenerative medicine. Biotechnol Lett. 2016;38(2):203–211. doi: 10.1007/s10529-015-1975-1
  97. Liu J, Lamme EN, Steegers-Theunissen RP, et al. Cleft palate cells can regenerate a palatal mucosa in vitro. J Dent Res. 2008;87(8):788–792. doi: 10.1177/154405910808700806
  98. Clark JM, Saffold SH, Israel JM. Decellularized dermal grafting in cleft palate repair. Arch Facial Plast Surg. 2003;5(1):40–45. doi: 10.1001/archfaci.5.1.40
  99. Tra WM, van Neck JW, Hovius SE, et al. Characterization of a three-dimensional mucosal equivalent: similarities and differences with native oral mucosa. Cells Tissues Organs. 2012;195(3):185–196. doi: 10.1159/000324918
  100. Buskermolen JK, Reijnders CM, Spiekstra SW, et al. Development of a full-thickness human gingiva equivalent constructed from immortalized keratinocytes and fibroblasts. Tissue Eng Part C Methods. 2016;22(8):781–791. doi: 10.1089/ten.TEC.2016.0066
  101. Asano Y, Shimoda H, Okano D, et al. Transplantation of three-dimensional artificial human vascular tissues fabricated using an extracellular matrix nanofilm-based cell-accumulation technique. J Tissue Eng Regen Med. 2017;11(4):1303–1307. doi: 10.1002/term.2108
  102. Sasaki K, Akagi T, Asaoka T, et al. Construction of three-dimensional vascularized functional human liver tissue using a layer-by-layer cell coating technique. Biomaterials. 2017;133:263–274. doi: 10.1016/j.biomaterials.2017.02.034
  103. Nishiyama K, Akagi T, Iwai S, Akashi M. Construction of vascularized oral mucosa equivalents using a layer-by-layer cell coating technology. Tissue Eng Part C Methods. 2019;25(5):262–275. doi: 10.1089/ten.TEC.2018.0337

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Eco-Vector


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».