Biomechanical aspects of gait impairments after stroke: an analytical review

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Restoring gait and balance functions after stroke constitutes a major problem in modern neurology. Post-stroke static and locomotor impairments are the most common disabling consequences that are critical for patients’ quality of life and basic functional independence.

This analytical review attempts to comprehensively examine and assess the biomechanical aspects affecting the gait in patients with post-stroke static and locomotor impairments.

The review outlines the multifaceted nature of such impairments, including muscle weakness, changes in neuromotor coordination, proprioception and stability, as well as compensatory mechanisms developing in patients.

A particular focus is on biomechanical parameters, including kinematics and kinetics of movements, to provide a deeper understanding of the nature of impairments in order to develop more effective treatment strategies. The analysis highlights the importance of a personalized rehabilitation approach to be based on specific impairments of each patient.

This review is intended to enhance the understanding of the biomechanical aspects of gait impairments for further research and development of innovative approaches in rehabilitation. The data presented are of great importance for the development and elaboration of personalized medical rehabilitation plans for post-stroke patients and may contribute to improving their functional independence and quality of life.

About the authors

Maksim S. Filippov

Moscow Centre for Research and Practice in Medical Rehabilitation, Restorative and Sports Medicine of Moscow Healthcare Department

Email: apokrife@bk.ru
ORCID iD: 0000-0001-9522-5082
SPIN-code: 8103-6730
Russian Federation, Moscow

Irena V. Pogonchenkova

Moscow Centre for Research and Practice in Medical Rehabilitation, Restorative and Sports Medicine of Moscow Healthcare Department

Email: pogonchenkovaiv@zdrav.mos.ru
ORCID iD: 0000-0001-5123-5991
SPIN-code: 8861-7367

MD, Dr. Sci. (Med.), Associate Professor

Russian Federation, Moscow

Gleb M. Lutokhin

Moscow Centre for Research and Practice in Medical Rehabilitation, Restorative and Sports Medicine of Moscow Healthcare Department

Author for correspondence.
Email: gleb.lutohin@gmail.com
ORCID iD: 0000-0003-1312-9797
SPIN-code: 8589-8530

MD, Cand. Sci. (Med.)

Russian Federation, Moscow

Egor A. Majorov

Moscow Centre for Research and Practice in Medical Rehabilitation, Restorative and Sports Medicine of Moscow Healthcare Department

Email: smotrinao@gmail.com
SPIN-code: 2357-8306
Russian Federation, Moscow

References

  1. Gerstl JVE, Blitz SE, Qu QR, et al. Global, Regional, and National Economic Consequences of Stroke. Stroke. 2023;54(9):2380–2389. doi: 10.1161/STROKEAHA.123.043131
  2. Ignatyeva VI, Voznyuk IA, Shamalov NA, et al. Social and economic burden of stroke in Russian Federation. S.S. Korsakov Journal of Neurology and Psychiatry. 2023;123(8–2):5–15. (In Russ.) doi: 10.17116/jnevro20231230825
  3. Levin OS, Bogolepova AN. Poststroke motor and cognitive impairments: clinical features and current approaches to rehabilitation. S.S. Korsakov Journal of Neurology and Psychiatry. 2020;120(11):99–107. (In Russ.) doi: 10.17116/jnevro202012011199
  4. Rosenblum D. Stroke Recovery and Rehabilitation. American Journal of Physical Medicine & Rehabilitation. 2010;89(8):687. doi: 10.1097/PHM.0b013e3181e722c8
  5. Khat’kova SE, Kostenko EV, Akulov MA, et al. Modern aspects of the pathophysiology of walking disorders and their rehabilitation in post-stroke patients. S.S. Korsakov Journal of Neurology and Psychiatry. 2019;119(12–2):43–50. (In Russ.) doi: 10.17116/jnevro201911912243
  6. Ozgozen S, Guzel R, Basaran S, Coskun Benlidayi I. Residual Deficits of Knee Flexors and Plantar Flexors Predict Normalized Walking Performance in Patients with Poststroke Hemiplegia. Journal of Stroke and Cerebrovascular Diseases. 2020;29(4):104658. doi: 10.1016/j.jstrokecerebrovasdis.2020.104658
  7. Lamontagne A, Malouin F, Richards CL, et al. Contribution of passive stiffness to ankle plantarflexor moment during gait after stroke. Archives of Physical Medicine and Rehabilitation. 2000;81(3):351–358. doi: 10.1016/S0003-9993(00)90083-2
  8. Mansfield A, Inness EL, Mcilroy WE. Chapter 13 — Stroke. Handbook of Clinical Neurology. 2018;159:205–228. doi: 10.1016/B978-0-444-63916-5.00013-6
  9. Nadeau S, Arsenault AB, Gravel D, Bourbonnais D. Analysis of the clinical factors determining natural and maximal gait speeds in adults with a stroke. American Journal of Physical Medicine & Rehabilitation. 1999;78(2):123–130. doi: 10.1097/00002060-199903000-00007
  10. Lee HH, Lee JW, Kim BR, et al. Predicting independence of gait by assessing sitting balance through sitting posturography in patients with subacute hemiplegic stroke. Topics in Stroke Rehabilitation. 2021;28(4):258–267. doi: 10.1080/10749357.2020.1806437
  11. Manto M, Serrao M, Filippo Castiglia S, et al. Neurophysiology of cerebellar ataxias and gait disorders. Clinical Neurophysiology Practice. 2023;8:143–160. doi: 10.1016/j.cnp.2023.07.002
  12. Pedroso JL, Vale TC, Braga-Neto P, et al. Acute cerebellar ataxia: differential diagnosis and clinical approach. Arq. Neuro-Psiquiatr. 2019;77(3):184–193. doi: 10.1590/0004-282X20190020
  13. Rounis E, Binkofski F. Limb Apraxias: The Influence of Higher Order Perceptual and Semantic Deficits in Motor Recovery After Stroke. Stroke. 2023;54(1):30–43. doi: 10.1161/STROKEAHA.122.037948
  14. Alashram AR, Annino G, Aldajah S, Raju M, Padua E. Rehabilitation of limb apraxia in patients following stroke: A systematic review. Applied Neuropsychology: Adult. 2022;29(6):1658–1668. doi: 10.1080/23279095.2021.1900188
  15. Solodimova GA, Spirkin AN. Information and measuring system of the bionic prosthesis of the lower limb. Measuring. Monitoring. Management. Control. 2018(1):57–65. doi: 10.21685/2307-5538-2018-1-9
  16. Yeo SS. Changes of Gait Variability by the Attention Demanding Task in Elderly Adults. The Korea Society of Physical Therapy. 2017;29(6):303–306. doi: 10.18857/jkpt.2017.29.6.303
  17. Winter DA. Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological. Waterloo Biomechanics. 1991.
  18. Cicarello NDS, Bohrer RCD, Devetak GF, et al. Control of center of mass during gait of stroke patients: Statistical parametric mapping analysis. Clinical Biomechanics. 2023;107:106005. doi: 10.1016/j.clinbiomech.2023.106005
  19. Perry J, Slac T, Davids JR. Gait Analysis: Normal and Pathological Function. Journal of Pediatric Orthopaedics. 1992;12(6):815. doi: 10.1097/01241398-199211000-00023
  20. Fukuchi CA, Fukuchi RK, Duarte M. Effects of walking speed on gait biomechanics in healthy participants: a systematic review and meta-analysis. Syst Rev. 2019;8:153. doi: 10.1186/s13643-019-1063-z
  21. Auvinet B, Berrut G, Touzard C, et al. Reference data for normal subjects obtained with an accelerometric device. Gait & Posture. 2002;16(2):124–134. doi: 10.1016/S0966-6362(01)00203-X
  22. Al-Obaidi S, Wall JC, Al-Yaqoub A, Al-Ghanim M. Basic gait parameters: a comparison of reference data for normal subjects 20 to 29 years of age from Kuwait and Scandinavia. J Rehabil Res Dev. 2003;40(4):361–6. doi: 10.1682/jrrd.2003.07.0361
  23. Skvortsov DV. Diagnostics of motor pathology by instrumental methods: gait analysis, stabilometry. Moscow: Scientific and medical firm MBN, 2007. (In Russ.)
  24. Mohan DM, Khandoker AH, Wasti SA, et al. Assessment Methods of Post-stroke Gait: A Scoping Review of Technology-Driven Approaches to Gait Characterization and Analysis. Front. Neurol. 2021;12:650024. doi: 10.3389/fneur.2021.650024
  25. Belayeva IA, Martynov MYu, Pehova YaG, et al. Movement pattern in the early rehabilitation period after ischemic stroke and the effect of lesion location. S.S. Korsakov Journal of Neurology and Psychiatry. 2019;119(3):53–61. (In Russ.) doi: 10.17116/jnevro201911903253
  26. Khat’kova SE, Kostenko EV, Akulov MA, et al. Modern aspects of the pathophysiology of walking disorders and their rehabilitation in post-stroke patients. S.S. Korsakov Journal of Neurology and Psychiatry. 2019;119(12–2):43–50. (In Russ) doi: 10.17116/jnevro201911912243
  27. Li S, Francisco GE, Zhou P. Post-stroke Hemiplegic Gait: New Perspective and Insights. Front. Physiol. 2018;9:1021. doi: 10.3389/fphys.2018.01021
  28. Jonsdottir J, Recalcati M, Rabuffetti M, et al. Functional resources to increase gait speed in people with stroke: strategies adopted compared to healthy controls. Gait & Posture. 2009;29(3):355–359. doi: 10.1016/j.gaitpost.2009.01.008
  29. De Quervain IA, Simon SR, Leurgans S, Pease WS, McAllister D. Gait Pattern in the Early Recovery Period after Stroke. The Journal of Bone & Joint Surgery. 1996;78(10):1506–1514. doi: 10.2106/00004623-199610000-00008
  30. Patterson KK, Parafianowicz I, Danells CJ, et al. Gait Asymmetry in Community-Ambulating Stroke Survivors. Archives of Physical Medicine and Rehabilitation. 2008;89(2):304–310. doi: 10.1016/j.apmr.2007.08.142
  31. Dettmann MA, Linder MT, Sepic SB. Relationships among walking performance, postural stability, and functional assessments of the hemiplegic patient. American Journal of Physical Medicine & Rehabilitation. 1987;66(2):77–90.
  32. Brandstater ME, de Bruin H, Gowland C, Clark BM. Hemiplegic gait: analysis of temporal variables. Archives of Physical Medicine and Rehabilitation. 1983;64(12):583–587.
  33. Kim H, Kim YH, Kim SJ, Choi MT. Pathological gait clustering in post-stroke patients using motion capture data. Gait & Posture. 2022;94:210–216. doi: 10.1016/j.gaitpost.2022.03.007
  34. Krasovsky T, Levin MF. Review: Toward a Better Understanding of Coordination in Healthy and Poststroke Gait. Neurorehabilitation and Neural Repair. 2010;24(3):213–224. doi: 10.1177/1545968309348509
  35. Roelker SA, Bowden MG, Kautz SA, Neptune RR. Paretic propulsion as a measure of walking performance and functional motor recovery post-stroke: A review. Gait & Posture. 2019;68:6–14. doi: 10.1016/j.gaitpost.2018.10.027
  36. Chen C, Leys D, Esquenazi A. The interaction between neuropsychological and motor deficits in patients after stroke. Neurology. 2013;80(3):27–34. doi: 10.1212/WNL.0b013e3182762569
  37. Padmanabhan P, Rao KS, Gulhar S, et al. Persons post-stroke improve step length symmetry by walking asymmetrically. Journal of Neuro Engineering and Rehabilitation. 2020;17:105. doi: 10.1186/s12984-020-00732-z
  38. Motoya R, Yamamoto S, Naoe M, et al. Classification of abnormal gait patterns of poststroke hemiplegic patients in principal component analysis. Japanese Journal of Comprehensive Rehabilitation Science. 2021;12:70–77. doi: 10.11336/jjcrs.12.70
  39. Skvortsov DV, Bulatova MA, Kovrazhkina EA, et al. A complex study of the movement biomechanics in patients with post-stroke hemiparesis. S.S. Korsakov Journal of Neurology and Psychiatry. 2012;112(6):45–49. (In Russ.)
  40. Brough LG, Kautz SA, Neptune RR. Muscle contributions to pre-swing biomechanical tasks influence swing leg mechanics in individuals post-stroke during walking. Journal of NeuroEngineering and Rehabilitation. 2022;19:55. doi: 10.1186/s12984-022-01029-z
  41. Nadeau S, Betschart M, Bethoux F. Gait Analysis for Poststroke Rehabilitation: The Relevance of Biomechanical Analysis and the Impact of Gait Speed. Phys Med Rehabil Clin. 2013;24(2):265–276. doi: 10.1016/j.pmr.2012.11.007
  42. Woolley SM. Characteristics of Gait in Hemiplegia. Topics in Stroke Rehabilitation. 2001;7(4):1–18. doi: 10.1310/JB16-V04F-JAL5-H1UV
  43. Carlsöö S, Dahlöf A, Holm J. Kinetic analysis of the gait in patients with hemiparesis and in patients with intermittent claudication. Scand J Rehabil Med. 1974;6(4):166–179.
  44. Wong AM, Pei YC, Hong WH, et al. Foot contact pattern analysis in hemiplegic stroke patients: an implication for neurologic status determination. Archives of Physical Medicine and Rehabilitation. 2004;85:1625–30. doi: 10.1016/j.apmr.2003.11.039
  45. Lamontagne A, Stephenson JL, Fung J. Physiological evaluation of gait disturbances post stroke. Clinical Neurophysiology. 2007;118(4):717–729. doi: 10.1016/j.clinph.2006.12.013
  46. Rogers A, Morrison SC, Gorst T, et al. Repeatability of plantar pressure assessment during barefoot walking in people with stroke. Journal of Foot and Ankle Research. 2020;13(1):39. doi: 10.1186/s13047-020-00407-x
  47. Sanghan S, Chatpun S, Leelasamran W. Plantar pressure difference: decision criteria of motor relearning feedback insole for hemiplegic patients. Int Proc Chem Biol Environ Eng. 2012;29:29–33.
  48. Rusu L, Paun E, Marin MI, et al. Plantar Pressure and Contact Area Measurement of Foot Abnormalities in Stroke Rehabilitation. Brain Sci. 2021;11(9):1213. doi: 10.3390/brainsci11091213
  49. Rogers A, Morrison SC, Gorst T, et al. Repeatability of plantar pressure assessment during barefoot walking in people with stroke. J Foot Ankle Res. 2020;13(1):39. doi: 10.1186/s13047-020-00407-x
  50. Datar S, Rabinstein AA. Cerebellar infarction. Neurologic Clinics. 2014;32(4):979–91. doi: 10.1016/j.ncl.2014.07.007
  51. Lee SH, Kim JS. Acute Diagnosis and Management of Stroke Presenting Dizziness or Vertigo. Neurologic Clinics. 2015;33(3):687–98. doi: 10.1016/j.ncl.2015.04.006
  52. Edlow JA, Newman-Toker DE, Savitz SI. Diagnosis and initial management of cerebellar infarction. The Lancet Neurology. 2008;7(10):951–964. doi: 10.1016/S1474-4422(08)70216-3
  53. Cabaraux P, Agrawal SK, Cai H, et al. Consensus Paper: Ataxic Gait. Cerebellum. 2023;22:394–430. doi: 10.1007/s12311-022-01373-9
  54. Kumar A, Lin CC, Kuo SH, Pan MK. Physiological Recordings of the Cerebellum in Movement Disorders. Cerebellum. 2023;22:985–1001. doi: 10.1007/s12311-022-01473-6
  55. Serrao M, Pierelli F, Sinibaldi E, et al. Progressive Modular Rebalancing System and Visual Cueing for Gait Rehabilitation in Parkinson’s Disease: A Pilot, Randomized, Controlled Trial with Crossover. Front. Neurol. 2019;10. doi: 10.3389/fneur.2019.00902
  56. Fiori L, Ranavolo A, Varrecchia T, et al. Impairment of Global Lower Limb Muscle Coactivation During Walking in Cerebellar Ataxias. Cerebellum. 2020;19:583–596. doi: 10.1007/s12311-020-01142-6
  57. Serrao M, Chini G, Casali C, et al. Progression of Gait Ataxia in Patients with Degenerative Cerebellar Disorders: a 4-Year Follow-Up Study. Cerebellum. 2017;16:629–637. doi: 10.1007/s12311-016-0837-2
  58. Serrao M, Conte C, Casali C, et al. Sudden Stopping in Patients with Cerebellar Ataxia. Cerebellum. 2013;12:607–616. doi: 10.1007/s12311-013-0467-x
  59. Conte C, Serrao M, Cuius L, et al. Effect of Restraining the Base of Support on the Other Biomechanical Features in Patients with Cerebellar Ataxia. Cerebellum. 2018;17:264–275. doi: 10.1007/s12311-017-0897-y
  60. Dale ML, Curtze C, Nutt JG. Apraxia of gait- or apraxia of postural transitions? Parkinsonism & Related Disorders. 2018;50:19–22. doi: 10.1016/j.parkreldis.2018.02.024
  61. Zadikoff C, Lang AE. Apraxia in movement disorders. Brain. 2005;128(7):1480–1497. doi: 10.1093/brain/awh560
  62. Grigorieva VN. Classification and diagnosis of apraxia. S.S. Korsakov Journal of Neurology and Psychiatry. 2015;115:26–35. doi: 10.17116/jnevro20151156226-35

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Gait cycle [19].

Download (118KB)
3. Fig. 2. Kinetic parameters of hemiparetic gait.

Download (618KB)

Copyright (c) 2024 Eco-Vector


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».