A polynomial analogue of Jacobsthal function

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

For a polynomial $f(x)\in \mathbb Z[x]$ we study an analogue of Jacobsthal function defined by$j_f(N) =\max_{m}\{for some x \in \mathbb N$ the inequality$(x+f(i),N) >1 $ holds for all $i \leqslant m\}$.We prove the lower bound$$j_f(P(y))\gg y(\ln y)^{\ell_f-1}(\frac{(\ln\ln y)^2}{\ln\ln\ln y})^{h_f}(\frac{\ln y\ln\ln\ln y}{(\ln\ln y)^2})^{M(f)},$$where $P(y)$ is the product of all primes $p$ below $y$, $\ell_f$ is the number of distinct linear factors of $f(x)$, $h_f$ is the number of distinct non-linear irreducible factors and $M(f)$ is the average size of the maximal preimage of a point under a map $f\colon \mathbb F_p\to \mathbb F_p$. The quantity $M(f)$ is computed in terms of certain Galois groups.

作者简介

Aleksandr Kalmynin

Steklov Mathematical Institute of Russian Academy of Sciences; National Research University Higher School of Economics

Email: alkalb1995cd@mail.ru
Scopus 作者 ID: 57189372991
Researcher ID: AAG-4815-2019
without scientific degree

Sergei Konyagin

Steklov Mathematical Institute of Russian Academy of Sciences

Email: konyagin23@gmail.com
ORCID iD: 0000-0002-9669-5446
Scopus 作者 ID: 6701482885
Researcher ID: Q-4807-2016
Doctor of physico-mathematical sciences, Professor

参考

  1. K. Ford, B. Green, S. Konyagin, J. Maynard, T. Tao, “Long gaps between primes”, J. Amer. Math. Soc., 31:1 (2018), 65–105
  2. H. Iwaniec, “On the problem of Jacobsthal”, Demonstr. Math., 11:1 (1978), 225–231
  3. R. A. Rankin, “The difference between consecutive prime numbers”, J. London Math. Soc., 13:4 (1938), 242–247
  4. R. Dietmann, C. Elsholtz, A. Kalmynin, S. Konyagin, J. Maynard, “Longer gaps between values of binary quadratic forms”, Int. Math. Res. Not. IMRN, 2023:12 (2023), 10313–10349
  5. H. Halberstam, H.-E. Richert, Sieve methods, London Math. Soc. Monogr., 4, Academic Press, Inc., London–New York, 1974, xiv+364 pp.
  6. J. C. Lagarias, A. M. Odlyzko, “Effective versions of the Chebotarev density theorem”, Algebraic number fields: L-functions and Galois properties (Univ. Durham, Durham, 1975), Academic Press, Inc., London–New York, 1977, 409–464
  7. B. J. Birch, H. P. F. Swinnerton-Dyer, “Note on a problem of Chowla”, Acta Arith., 5 (1959), 417–423
  8. J.-P. Serre, Topics in Galois theory, Res. Notes Math., 1, 2nd ed., A. K. Peters, Wellesley, MA, 2007, xvi+120 pp.
  9. D. Hilbert, “Ueber die Irreduбibilität ganzer rationaler Funбtionen mit ganzzahligen ‘oeffiбienten”, J. Reine Angew. Math., 1892:110 (1892), 104–129

补充文件

附件文件
动作
1. JATS XML

版权所有 © Калмынин А.B., Конягин С.V., 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».