Простые числа в кортежах и теорема Романова
- Авторы: Радомский А.О.1
-
Учреждения:
- Национальный исследовательский университет "Высшая школа экономики", г. Москва
- Выпуск: Том 89, № 1 (2025)
- Страницы: 135-150
- Раздел: Статьи
- URL: https://bakhtiniada.ru/1607-0046/article/view/303939
- DOI: https://doi.org/10.4213/im9544
- ID: 303939
Цитировать
Аннотация
Мы получаем нижнюю оценку на количество простых чисел в кортежах. В качестве приложения получена нижняя оценка для функции числа представлений типа Романова. Библиография: 10 наименований.
Об авторах
Артём Олегович Радомский
Национальный исследовательский университет "Высшая школа экономики", г. Москва
Автор, ответственный за переписку.
Email: artyom.radomskii@mail.ru
кандидат физико-математических наук, научный сотрудник
Список литературы
- Yitang Zhang, “Bounded gaps between primes”, Ann. of Math. (2), 179:3 (2014), 1121–1174
- J. Maynard, “Small gaps between primes”, Ann. of Math. (2), 181:1 (2015), 383–413
- J. Maynard, “Dense clusters of primes in subsets”, Compos. Math., 152:7 (2016), 1517–1554
- Yong-Gao Chen, Yuchen Ding, “Quantitative results of the Romanov type representation functions”, Q. J. Math., 74:4 (2023), 1331–1359
- N. P. Romanoff, “Über einige Sätze der additiven Zahlentheorie”, Math. Ann., 109:1 (1934), 668–678
- P. Erdős, “On integers of the form $2^k+p$ and some related problems”, Summa Brasil. Math., 2 (1950), 113–123
- Yong-Gao Chen, Yuchen Ding, “On a conjecture of Erdős”, C. R. Math. Acad. Sci. Paris, 360 (2022), 971–974
- Г. Дэвенпорт, Мультипликативная теория чисел, Наука, М., 1971, 200 с.
- M. Ram Murty, Problems in analytic number theory, Grad. Texts in Math., 206, Read. Math., 2nd ed., Springer, New York, 2008, xxii+502 pp.
- А. О. Радомский, “Последовательные простые числа на коротких интервалах”, Труды МИАН, 314, Аналитическая и комбинаторная теория чисел (2021), 152–210
Дополнительные файлы
