Convergence of regularized greedy approximations

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We consider a new version of a greedy algorithm in biorthogonal systems in separable Banach spaces.We consider approximations of an element $f$ via $m$-term greedy sum, which isconstructed from the expansion by choosing the first$m$ greatest in absolute value coefficients.It is known that the greedy algorithm does not always converge to the original element.We prove a theorem showing that the new version of a greedy algorithm(called the regularized greedy algorithm) always converges to the original element in Efimov–Stechkin spaces. We also construct examples that show the significance of the conditions of the main theorem. 

About the authors

Iurii Petrovich Svetlov

Lomonosov Moscow State University

Author for correspondence.
Email: yuri.svetlov@math.msu.ru
without scientific degree, no status

References

  1. V. Temlyakov, Greedy approximation, Cambridge Monogr. Appl. Comput. Math., 20, Cambridge Univ. Press, Cambridge, 2011, xiv+418 pp.
  2. S. V. Konyagin, V. N. Temlyakov, “A remark on greedy approximation in Banach spaces”, East J. Approx., 5:3 (1999), 365–379
  3. P. Wojtaszczyk, “Greedy algorithms for general Biorthogonal systems”, J. Approx. Theory, 107:2 (2000), 293–314
  4. V. N. Temlyakov, “Greedy algorithm and $m$-term trigonometric approximation”, Constr. Approx., 14:4 (1998), 569–587
  5. Н. В. Ефимов, С. Б. Стечкин, “Аппроксимативная компактность и чебышевские множества”, Докл. АН СССР, 140:3 (1961), 522–524
  6. I. Singer, “Some remarks on approximative compactness”, Rev. Roumaine Math. Pures Appl., 9 (1964), 167–177
  7. A. R. Alimov, I. G. Tsar'kov, Geometric approximation theory, Springer Monogr. Math., Springer, Cham, 2021, xxi+508 pp.
  8. S. J. Dilworth, D. Kutzarova, V. N. Temlyakov, “Convergence of some greedy algorithms in Banach spaces”, J. Fourier Anal. Appl., 8:5 (2002), 489–506
  9. С. В. Конягин, И. Г. Царьков, “Пространства Ефимова–Стечкина”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 1986, № 5, 20–27
  10. А. Н. Колмогоров, С. В. Фомин, Элементы теории функций и функционального анализа, 6-е перераб. изд., Наука, М., 1989, 624 с.
  11. А. Р. Алимов, И. Г. Царьков, Основы геометрической теории приближений, Часть I. Приближение выпуклыми множествами, Изд. П. Ю. Мархотин, М., 2016, 120 с.
  12. Б. С. Кашин, А. А. Саакян, Ортогональные ряды, 2-е доп. изд., АФЦ, М., 1999, x+550 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Svetlov I.P.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».